T8 = T)] o 4

1.1 6.1-Language ReferenCe e 4
1.1.1 6.1-Variables, Literals, and TYPeSottt e e e 4
1.1.2 6.0-OPEIAtOIS . .o ottt et e e e e e e 8
1.1.3 6.1-Objects and INterfaces i 11
1.1.4 6.1-XML SUPPOI ottt et et et e e e e e e e e e e e e e e 13
1.1.56.1-Garbage ColleCtion 17
1.6 6.0-EVENIS ... 17
1.1.7 6.1-Threading Modelo 18
L L8 B.d-SC0PE . .ttt e e e 18
1.1.9 6.2-IntriNSIC ObJECESot e 18
1.1.10 6.1-Program StatemeNntSottt e e e e 19
1.1.11 6.1-Built-In FUNCHIONS . . o oo e e e 28
1.1.12 6.1-Core Library EXIENSIONottt e e e e e e 33
1.1.13 6.1-BrightScript Debug COoNSole 33
1.1.14 6.1-BrightSCript VEISIONS . . . o .ottt e e e e e e e e e e 34
1.1.15 6.1-Reserved WOrKASo 35
1.1.16 6.1-EXamMpIe SCIPt . . . oot e 36

1.2 6.1-0DbJeCt REEIENCE . . . oo e 43
1.2.16.1-Global FUNCLIONS e e e 45
1.2.2 6.1-BrightScript Core ObJECtSt 51

L1.2.2.0 B.L-TOAITAY v v ittt e e e e e e e e e e e e 52
1.2.2.2 6.1-TOASSOCIALVEAITAY . . . o ottt et et e e e e e e e e e e e e 54
1.2.2.36.1-10B00IEAN 55
1.2.2.4 B.1-TOBYRAITAY . . . ottt sttt e e e e e e 56
1.2.2.5 6.1-roDouble, roIntrinsicDouble 59
1.2.2.6 6.1-TOFUNCHON . . .o e e e 59
1.2.2.7 6.1-roInt, roFloat, rOStINGot e 59
1.2.2.8 B.1-T0LISt . .o 63
1.2.2.9 B.1-TOMESSAgEP O . . . o 66
1.2.2.10 6. 1-TOREUEX . o ot vttt it e e e e e e 67
1.2.2.11 6.1-roXMLEIEMENt . .. 68
1.2.2.02 6.2-TOXMLLISt . .o 71
1.2.3 6.1-Presentation and Widget ODJECtS it 74
1.2.3.1 6. 1-r0AUdIOEVENTMX . . .o 74
1.2.3.2 6.1-rOAUdIOOULPUL . . . o ottt e e e e e e e e e e 75
1.2.3.3 6. 1-T0AUdIOP A . . .o e 76
1.2.3.4 6.1-rOAUdIOPIAYEIMX . . ot 81
1.2.3.5 6.1-r0CanvasWidgetttt 84
1.2.3.6 6.1-rOCIOCKWIAGEL ot e 87
1.2.3.7 6.1-roHdmilnputChanged, roHdmiOutputChangedt 90
1.2.3.8 6.1-rOHIMIWIAGELo 90
1.2.3.9 6.1-roHIMIWIAQEIEVENE e 95
1.2.3.10 6.1-rolmageBuifer e 95
1.2.3.10 6.1-10IMagEPIaY . . . o 96
1.2.3.12 6.1-10ImMageWidgetot e 101
1.2.3.13 6. 1-TORECIANGIEo e 105
1.2.3.14 6.1-TOShOULCASISIIEamM 106
1.2.3.15 6.1-roShoutcastStreamEVENt 108
1.2.3.16 6.1-rOoStreamQUEUEttt ettt e et e e 108
1.2.3.17 6.1-roTextField 110
1.2.3.18 6. 1-1O0TeXtWIdget ottt e 112
1.2.3.19 6.1-roTouchEvent, roTouchCalibrationEvent e 115
1.2.3.20 6.1-TOTOUCNSCIEENt 116
1.2.3.21 6.1-roVideoEvent, roOAUdiOEVENT 120
1.2.3.22 6.1-1OVIEOINPUL . . . oottt e e e 122
1.2.3.23 6.1-10VIideOMOOE 124
1.2.3.24 6. 1-10VIdEOP YOI . . . o 132
1.2.4 6.0-File ODJECESt 144
1.2.4.1 6.1-r0APPENdRIlE . . o e 144
1.2.4.26.1-roCreateFile 145
1.2.436.1-roReadFile 147
1.2.4.4 6.1-roReadWriteFile 148
1.2.5 6.1-Hashing and Storage ObJeCtSttt e e 150
1.2.5.1 6.1-r0BIOCKCIPNEr . o e 150
1.2.5.2 6.1-roBrightPackageot e 152
1.2.5.3 6.1-roDISKEITOTEVENTo 154
1.2.5.4 6.1-roDISKMONITOro 155
1.2.5.5 6.1-r0HaShGENEIatorttt 156
1.2.5.6 B.1-TOPASSKBY . . .\ttt e 157
1 2. 5.7 B L-TOREGI Sy . ottt 158

1.2.5.8 6.1-TOREQISITYSECHONo 158

1.2.5.9 6.1-roSqliteDatabaset 159

1.2.5.10 6.1-10SqliteEVENt o e 161
1.2.5.11 6.1-r0SgliteStatement e 162
1.2.5.12 6.1-roStorageAttached, roStorageDetached 165
1.2.5.13 6.1-10StorageHOtPIUGot 166
1.2.5.14 6.1-10St0ragelnfO 167
1.2.6 6.1-Content Management ODJeCtS 169
1.2.6.1 6.1-rOASSEtCOIIECHIONo 169
1.2.6.2 6.1-TOASSEtFEIChEr . . . o e 171
1.2.6.3 6.1-rOASSEtFetCherEVENt 173
1.2.6.4 6.1-roAssetFetcherProgressEVENnt 178
1.2.6.5 B.1-TOASSELPO0I e 178
1.2.6.6 6.1-TOASSEtPOOIFIIESo 180
1.2.6.7 6.1-TOASSELREAlIZEr 181
1.2.6.8 6.1-rOASSEtRealiZErEVENt 182
1.2.6.9 B.1-TOSYNCSPEC . . o o vt it e et e et e e e e e e e e 183
1.2.7 6.1-Networking ObJeCtSo ot e 184
1.2.7.1 6.1-roDatagramRECEIVELottt 185
1.2.7.2 6.1-r0DatagramSeNUerttt e e e 186
1.2.7.3 6.1-roDatagramSOCKet e 187
1.2.7.4 6.1-roDatagramEVeNt 188
1.2.7.5 B, L-TOHI D S OV T . . oo e 189
1.2.7.6 6. 1-TOHUPEVENT . . . o e 192
12,77 B.L-TOKBY SO . . o ottt 193
1.2.7.8 B.1-TOMEAIASEIVEL . . . o ottt e 195
1.2.7.9 B.1-TOMediaStrEamMErot e 196
1.2.7.10 6.1-roMediaStreamerEVENtt 198
1.2.7.11 6.1-TOMIMESIICAM . . . o ottt ettt et e e e e e e e e e e 198
1.2.7.12 6.1-rOMIMESIrEamMEVENT o e 199
1.2.7.13 6.1-roONetworkAdVErtiISEMENTo e e 200
1.2.7.14 6.1-roNetworkConfigurationt 201
1.2.7.15 6.1-roNetworkAttached 207
1.2.7.16 6.1-roNetworkDetached e 207
1.2.7.17 6.1-TONEtWOIKDISCOVEIY . . o .ttt ittt e e e e e e e e e e e e e e e e e 207
1.2.7.18 6.1-rONetwOrkHOIPIUGot e 209
1.2.7.19 6.1-rONetWOrKStatiStICSo ot 210
127,20 6. L-T0P D . e e 211
1.2.7.21 6. 1-TOPIPEVENT . . o e 212
1.2.7.22 6. 1-TORSSAIICIE . . o o 212
1.2.7.23 6. 1-TORSS P ISlo e 213
1.2.7.24 6. 1-TORISPSIICAM . . . oottt e e 214
1.2.7.25 6. 1-TOSNMPAGENT . . oottt e e e 215
1.2.7.26 6. 1-TOSNMPEVENt . . .o 216
1.2.7.27 6.1-roStreamByteEVENt 217
1.2.7.28 6.1-roStreamConnectRESUIEVENL e 217
1.2.7.29 6.1-rOoStreamENCAEVENTot e 218
1.2.7.30 6.1-roStreamLIiNEEVENt 218
1.2.7.31 6.1-TOSYNCMANAGET o ittt et e et e e e e e e e e e 219
1.2.7.32 6.1-r0SYNCMaNagerEVeNt 221
1.2.7.33 6. 1-T0T O P S IVl . ettt 222
1.2.7.34 6.1-r10TCPCONNECIEVENTt e 223
1.2.7.35 6.1-TOUPNPACHONRESUILo e 223
1.2.7.36 6.1-TOUPNPCONIIOIEr . . .o e 224
1.2.7.37 6. 1-TOUPNPDEVICE . . . ottt e e e e e e e 225
1.2.7.38 6.1-TOUPNPSEarChEVENt e 226
1.2.7.39 6. 1-TOUPNPSEIVICE . . .t ittt et e e e e e e 227
1.2.7.40 6.1-rTOUPNPSEIVICEEVENto 228
1.2.7.41 B.1-TOT CP S aM . . .ottt et et e e e e 229
1.2.7.42 6.1-TOUIISIrEAMo 230
1.2.7.43 6. 1-10UI Trans ero e 231
1.2.7.44 6. 1-TOUIEVENt . ..o e 238
1.2.8 6.1-InpUt/OULPUL OBJECES oottt e e e 242
1.2.8.1 B.1-TOBIMANAGET oot e 243
1.2.8.2 6.1-r0CECINtEIfACEt 245
1.2.8.3 6.1-r0CeCRXFrameEVeNt 246
1.2.8.4 6.1-r0CeCTXCOMPIEteEVENt e 247
1.2.8.5 6.1-r0ChannelManagerttt e 248
1.2.8.6 6.1-rOCONIOIPOIMTo e e e 253
1.2.8.7 6.1-roControlUp, roCONtrolDOWNot e e e 257
1.2.8.8 6.1-TOGPIOBULIONo e 257
1.2.8.9 6.1-r0GPIOCONIIOIPOIto 257

1.2.8.10 6.1-T0OIRRECEIVEI . . .ttt e 258

1.2.8.11 6.1-rolRDownEvent, rolRRepeatEvent, rolRUpEvVeNt e 259

1.2.8.12 6.1-TOIRTIrANSMILIEr oo e e e 260
1.2.8.13 6.1-rolRTransmitCoOmMPpleteEVENto 261
1.2.8.14 6.1-TOIRREMOLE 262
1.2.8.15 6.1-TOIRREMOEPTIESSo e 263
1.2.8.16 6.1-rOKeYDO0ard e 263
1.2.8.17 6.1-10KeYb0ardPreSS . . .o e 265
1.2.8.18 6.1-10SeqUENCEMAICNET o 266
1.2.8.19 6.1-r0SequenCeMAatCNEVENTo 267
1.2.8.20 6.1-10SerialPort 268
1.2.9 6.1-SYStEM ODJECES o ittt et e e 270
1.2.9.1 6.1-roDeviceCUuStOMIZALION 270
1.2.9.2 6.1-roDevicelnformation 271
1.2.9.3 6.1-TORESOUICEMANAGET . . . o . ittt ettt e e e e e e e e e 273
1.2.9.4 B.1-TOSYSIEMLOG . . . ottt e 274
1.2.10 6.1-Date and Time ODJECESttt e e e e e e e 275
1.2.10.1 6.1-r0DateTiMEt 275
1.2.10.2 6.1-roNetworkTIMEEVENT 277
1.2.10.3 6.1-10SYSteMTIME . . .ot e 278
1.2.10.4 6.1-TOTIMEI . Lot et e e 281
1.2.10.5 6.1-ToTIMErEVENL 284
1.2.20.6 6.1-TOTIMESPAN o oottt et e e et e e e e e e e e e e e 284
1.2.11 6.1-Legacy ObJeCtSt 285
1.2.11.1 6.1-rORISPSIrEaMEVENTo 285
1.2.11.2 6. 1-TOSYNCPO0I . . o 285
1.2.11.3 6.1-rOSYNCPOOIEVENLo 288
1.2.11.4 6.1-r0SYNCPOOIFIIESo 289

1.2.11.5 6.1-roSYNCPOOIPIOgreSSEVENTo 289

6.1-BrightScript

= Firmware Version 6.1

® Version 7.0

® Version 6.2

® Version 6.1

® Previous Versions

BrightScript is a powerful scripting language for building media and networked applications for embedded devices. This language features
integrated support for a lightweight library of BrightScript objects, which are used to expose the API of the platform (device) that is running
BrightScript. The BrightScript language connects generalized script functionality with underlying components for networking, media playback, Ul
screens, and interactive interfaces; BrightScript is optimized for generating user-friendly applications with minimal programmer effort.

The BrightScript section is divided into two categories:

® Language Reference: Outlines the characteristics of the BrightScript language, such as syntax, operators, statements, types, core library, etc.
® Object Reference: Provides a directory of publicly available objects, interfaces, and methods that comprise the BrightScript API.

6.1-Language Reference

=~ Firmware Version 6.1

® Version 7.0
® Version 6.2
® Version 6.1
® Previous Versions

The following are some general characteristics of BrightScript, as compared to other common scripting languages:

BrightScript is not case sensitive.

Statement syntax is similar to Python, Basic, Ruby, and Lua (and dissimilar to C).

Like JavaScript and Lua, objects and named data-entry structures are associative arrays.
BrightScript supports dynamic typing (like JavaScript) and declared types (like C and Java).
Similar to .Net and Java, BrightScript uses "interfaces" and "components"” (i.e. objects).

BrightScript code is compiled into bytecode that is run by an interpreter. The compilation step occurs every time a script is loaded and run.
Similar to JavaScript, there is no separate compilation step that results in a saved binary file.

BrightScript and its component architecture are written in 100% C for speed, efficiency, and portability. Since many embedded processors do not
have floating-point units, BrightScript makes extensive use of the "integer" type. Unlike some languages (including JavaScript), BrightScript only
uses floating point numbers when necessary.

6.1-Variables, Literals, and Types

= Firmware Version 6.1

® Version 7.0
® Version 6.2
® Version 6.1
® Previous Versions

ON THIS PAGE

Identifiers

Types

Type Declaration Characters
Literals (Constants)

Array Literals

Associative Array Literals
Invalid Object Return
Numbers

® Dynamic Typing
® Type Conversion
® Type Conversion and Accuracy

https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Identifiers

Identifiers are names of variables, functions, and labels. They also apply to BrightScript object methods (i.e. functions) and interfaces (which
appear after a "." Dot Operator). Identifiers have the following rules:

Must start with an alphabetic character (a-z).

May consist of alphabetic characters, numbers, or the underscore symbol ("_").

Are not case sensitive.

May be of any length.

May not be a reserved word.

(variables only) May end with an optional type declaration ("$" for a string, "%" for an integer, "!" for a float, "#" for a double).

Examples

a
boy5
super _man$
42%

Types

BrightScript supports both dynamic typing and declared types. This means that every value has a type determined at runtime, but variables can
also be instructed to always contain a value of a specified type. If a value is assigned to a variable that has a specified type, the type of the value
will be converted to the variable type if possible. If conversion is impossible, a runtime error will occur.

A variable that does not end in a type declaration may change its type dynamically. For example, the statement a=4 will create an integer, while a
following statement specifying that a="hel | 0" will change the type of the variable a to a string.

BrightScript supports the following types:

Boolean: True or False

Integer: A 32-bit signed integer number

Float: The smallest floating point number format supported by either the hardware or software

Double: The largest floating point number format supported by either the hardware or software. Although Double is an intrinsically understood
type, it is implemented internally with the rolntrinsicDouble object. As a general rule, this type is hidden from developers.

® String: A sequence of ASCII (not UTF-8) characters. BrightScript uses two intrinsic string states:

® Constant strings: A statement such as s="ast ri ng" will create an intrinsic constant string.
® roString instances: Once a string is used in an expression, it becomes an roString instance. For example, the statements = s +
"bstring" will cause the intrinsic string s to convert to an roString instance. If this is followed by the statement s2 = s, the s2 value will
be a reference to s, not a copy of it. The behavior of reference counting strings is new to BrightScript version 3.0.
® Object: A reference to a BrightScript object (i.e. a native component). Note that the t ype() function will not return "Object" but the type of
object instead (e.g. roList, roVideoPlayer). Also note that there is no separate type for intrinsic BrightScript Objects. All intrinsic BrightScript
Objects are built on the roAssociativeArray object type.
® Interface: An interface in a BrightScript Object. If a "." Dot Operator is used on an interface type, the member must be static (since there is
no object context).
® |nvalid: A type that can have only one value: | nval i d. This type is returned in various instances when no other type is valid (for example,
when indexing an array that has never been sent).

The following are examples of different types. The ? statement is a shortcut for pri nt , while the t ype() function returns a string that identifies
the type of the passed expression.

Bright Scri pt M cro Debugger.

Enter any BrightScript statement, debug commands, or HELP
BrightScript> ?type(l)

I nt eger

BrightScript> ?type(1.0)
Fl oat

Bright Scri pt> ?type("hello")
String

Bright Script> ?type(Createbject("roList"))
roLi st

BrightScript> ?type(1l%
| nt eger

Bright Script> bl =1
Bri ght Scri pt> ?type(b!)
Fl oat

Bri ght Script> c$="hel | 0"
Bri ght Scri pt> ?type(c$)
String

Bright Scri pt> d="hel | o agai n"
Bright Scri pt> ?type(d)
String

Bright Scri pt> d=1
Bright Scri pt> ?type(d)
| nt eger

Bright Script> d=1.0
Bright Script> ?type(d)
Fl oat

Type Declaration Characters

A type declaration may be used at the end of a variable or literal to fix its type. Variables with the same identifier but separate types are separate
variables: For example, defining a$ and a% would create two independent variables.

Character Type Examples
$ String A$, ZZ$
% Integer Al1%, SUM%

! Single-Precision (Float) B!, N1!

Double-Precision (Double) A#, 1/3#, 2#

Literals (Constants)
The following are valid literal types:

Type Boolean: Either Tr ue or Fal se

Type Invalid: | nval i d only

Type String: A string in quotes (e.g. "This is a string")

Type Integer: An integer in hex (e.g. HFF) or decimal (e.g. 255) format

Type Float: A number with a decimal (e.g. 2. 01), in scientific notation (e.g. 1. 23456 E+30), or with a Float type designator (e.g. 2!)

Type Double: A number in scientific notation containing a double-precision exponent symbol (e.g. 1. 23456789D- 12) or with a Double type
declaration (e.g. 2. 3#)

Type Function: Similar to variable formatting (e.g. MyFunct i on)

® Type Integer: LINE_NUM — The current source line number

Array Literals

The [] Array Operator can be used to declare an array. It can contain literals (constants) or expressions.

Myarray = []
Myarray = [1, 2, 3]
Myarray = [x+5, true, 1<>2, ["a","b"]]

Associative Array Literals

The { } Associative Array Operator can be used to define an associative array. It can contain literals (constants) or expressions.

aa={ }
aa={keyl: "val ue", key2: 55, key3: 5+3 }

Arrays and associative arrays can also be defined with the following format:

aa = {
Myfuncl: aFunction
Myval 1 : "the val ue"

Invalid Object Return

Many methods (i.e. functions) that return objects can also return Invalid (for example, in cases where there is no object to return). In these cases,
the variable accepting the result must be dynamically typed since it may be assigned either type.

The following code will return a type mismatch: a$ is a string that has a string type declaration, and thus it cannot contain Invalid.

I =[]
a%$=l . pop()

Numbers

Dynamic Typing
The following rules determine how integers, doubles, and floats are dynamically typed:

1. If a constant contains 10 or more digits, or if D is used in the exponent, the number is Double. Adding a # type declaration also forces a
constant to be a Double.

2. If the number is not double precision and it contains a decimal point, the number is a Float. Expressing a number in scientific notation
using the E exponent also forces a constant to be a Float.

3. If neither of the above conditions is true for a constant, the number is an Integer.

Type Conversion

When operations are performed on one or two numbers, the result must be typed as an Integer, Float, or Double. When an addition (+),
subtraction (-), or multiplication (*) operation is performed, the result will have the same degree of precision as the most precise operand: For
example, multiplying an Integer by a Double will return a number that is a Double.

Only when both operands are Integers will the result be an Integer number. If the result of two Integer operands is outside the 32-bit range, the
operation and return will be carried out with Doubles.

Division (/) operates using the same rules as above, except that it can never be carried out at the Integer level: When both operators are
Integers, the operation and return will be carried out with Floats.

Comparison operations (e.g. <, >, =) will convert the numbers to the same type before they are compared. The less precise type will always be
converted to the more precise type.

Type Conversion and Accuracy

When a Float or Double number is converted to the Integer type, it is rounded down: The largest integer that is not greater than the number is
used. This also happens when the INT function is called on a number.

When a Double number is converted to the Float type, it is 4/5 rounded: The least significant digit is rounded up if the fractional part is >=5
(otherwise, it is left unchanged).

When a Float number is converted to the Double type, only the seven most significant digits will be accurate.

6.1-Operators
ON THIS PAGE

® | ogical and Bitwise Operators
® Dot Operator

® Associative Arrays
® Array and Function-Call Operators

® Array Dimensions
® Equals Operator

~ Firmware Version 6.1

Version 7.0
Version 6.2
Version 6.1

[)
[)
[)
® Previous Versions

Operations in the innermost level of parentheses are performed first. Evaluation then proceeds according to the precedence in the following
table. Operations on the same precedence are left-associative, except for exponentiation, which is right-associative.

Description Symbol(s)
Function Calls or Parentheses 0
Array Operators 0
Exponentiation n

Negation -+

https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Multiplication, Division, Modulus = *, /, MOD

Addition, Subtraction +, -
Comparison <, > =, <> <=, >=
Logical Negation NOT
Logical Conjunction AND
Logical OR OR
String Operators: The following operators work with strings: <, >, =, <>, <=, >= +

Function References: The = and <> operators work on variables that contain function references and function literals.

Logical and Bitwise Operators

The AND, OR, and NOT operators are used for logical (Boolean) comparisons if the arguments for these operators are Boolean:

if a=c and not(b>40) then print "success"

On the other hand, if the arguments for these operators are numeric, they will perform bitwise operations:

1 and 2 ' X is zero
y = true and false ' y is false

x
|

When the AND or OR operator is used for a logical operation, only the necessary amount of the expression is executed. For example, the first
statement below will print "True", while the second statement will cause a runtime error (because "invalid" is not a valid operand for OR):

print true or invalid
print false or invalid

Dot Operator

The "." Dot Operator can be used on any BrightScript object. It also has special meaning when used on an roAssociativeArray object, as well as r
oXMLElement and roXMLList objects. When used on a BrightScript Object, it refers to an interface or method associated with that object. In the
following example, | f | nt refers to the interface and Set | nt () refers to a method that is part of that interface:

i =CreateCbj ect("rolnt")
i.iflnt.Setlnt(5)
i.Setlnt(5)

Every object method is part of an interface. However, specifying the interface with the "." Dot Operator is optional. If the interface is omitted, as in
the third line of the above example, each interface that is part of the object will be searched for the specified member. If there is a naming conflict
(i.e. a method with the same name appears in two interfaces), then the interface should be specified.

Associative Arrays

When the "." Dot Operator is used on an Associative Array, it is the same as calling the Lookup() or AddRepl ace() methods, which are
member functions of the roAssociativeArray object:

aa=Creat evj ect ("roAssoci ati veArray")
aa. newkey="t he val ue"
print aa.newkey

Note that the parameters of the "." Dot Operator are set at compile time; they are not dynamic, unlike the Lookup() and AddRepl ace() method
s.

The "." Dot Operator is always case insensitive: For example, the statement aa. NewKey=55 will create the entry "newkey" in the associative
array. To generate case-sensitive keys, instantiate an roAssociativeArray object and use the Set ModeCaseSensi ti ve() method.

Array and Function-Call Operators

The [] operator is used to access an array (i.e. any BrightScript object that has an ifArray interface, such as roArray and roList objects). It can
also be used to access an associative array. The [] operator takes expressions that are evaluated at runtime, while the "." Dot Operator takes
identifiers at compile time.

The (') operator can be used to call a function. When used on a function literal (or variable containing a function reference), that function will be
called.

The following code snippet demonstrates the use of both array and function-call operators.

aa=Creat ebj ect ("roAssoci ati veArray")
aal "newkey"] ="t he val ue"
print aal"newkey"]

array=Creat eQbj ect ("roArray", 10, true)
array[2] ="two"
print array[2]

fivevar=five
print fivevar()

array[1] =fi vevar
print array[1] ()

print 5

function five() As Integer
return 5
end function

Array Dimensions

Arrays in BrightScript are one dimensional. Multi-dimensional arrays are implemented as arrays of arrays. The [] operator will automatically map
multi-dimensionality. For example, the following two fetching expressions are the same:

di marray[5, 5, 5]
item= array[1][2][3]
item= array[1, 2, 3]

If a multi-dimensional array grows beyond its hint size, the new entries are not automatically set to roArray.

Equals Operator

The = operator is used for both assignment and comparison:

a=5
If a=5 then print "a is 5"

Unlike the C language, BrightScript does not support use of the = assignment operator inside an expression. This is meant to eliminate a
common class of bugs caused by confusion between assignment and comparison.

When assignment occurs, intrinsic types are copied, while BrightScript Objects are reference counted.
6.1-Objects and Interfaces

~ Firmware Version 6.1

® Version 7.0
® Version 6.2
® Version 6.1
® Previous Versions

ON THIS PAGE

BrightScript Objects

Wrapper Objects

Interfaces

Statement and Interface Integration

® PRINT

WAIT

Expression Parsing
Array Operator

Member Access Operator

BrightScript Objects

Though BrightScript operates independently of its object architecture and library, they are both required for programming BrightScript
applications. The API of a BrightSign platform is exposed to BrightScript as a library objects: Platforms must register a new BrightScript object to
expose some part of its API.

BrightScript objects are written in C (or a compatible language such as C++), and are robust against version changes: Scripts are generally
backwards compatible with objects that have undergone revisions.

BrightScript objects keep a reference count; they delete themselves when the reference count reaches zero.

Wrapper Objects

https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

All intrinsic BrightScript types (Boolean, Integer, Float, Double, String, and Invalid) have object equivalents. If one of these intrinsic types is
passed to a function that expects an object, the appropriate wrapper object will be created, assigned the correct value, and passed to the function
(this is sometimes referred to as "autoboxing"): This allows, for example, roArray objects to store values (e.g. integers and strings) as well as
objects.

Any expression that expects one of the above types will work with the corresponding wrapper object as well: roBoolean, rolnt, roFloat, roDouble, r
oString.

The following examples illustrate how wrapper objects work.

Print 5.tostr()+"th"
Print "5".toint()+5

-5.tostr() "This will cause an error. Instead, use the foll ow ng:
(-5).tostr()

if type(5.tostr())<> "String" then stop
if (-5).tostr()<>"-5" then stop

if (1+2).tostr()<>"3" then stop

i =-55

if i.tostr()<>"-55" then stop

if 100% tostr()<>"100" then stop

if (-100%.tostr()<>"-100" then stop
y%=10

if y%tostr()<>"10" then stop

if "5".toint()<>5 or type("5".toint())<>"Integer" then stop

if "5".tofloat()<>5.0 or type("5".tofloat())<>"Float" then stop
fs="-1.1"

if fs.tofloat()<>-1.1 or fs.toint()<>1 then stop

if "01234567".1eft(3)<>"012" then stop

if "01234567".right(4)<>"4567" then stop
if "01234567". m d(3)<>"34567" then stop
if "01234567".md(3,1)<>"3" then stop

if "01234567".instr("56")<>5 then stop

if "01234567".instr(6,"56")<>-1 then stop
if "01234567".instr(0,"0")<>0 then stop

Interfaces

Interfaces in BrightScript operate similarly to Java or Microsoft COM: An interface is a known set of member functions that implement a set of
logic. In some ways, an interface is similar to a virtual base class in C++; any script or program that is compatible with C can use an object
interface without regards to the type of object it belongs to: For example, the roSerialPort object, which controls the standard serial interface (RS-

232), implements three interfaces: ifSerialControl, ifStreamReceive, and ifStreamSend. Since the print statement sends its output to any object
that has an ifStreamSend interface, it works with the roSerialPort object, as well as any other object with the ifStreamSend interface.

Statement and Interface Integration
Some BrightScript statements have integrated functionality with interfaces. This section describes how to use statements with interfaces.

PRINT

Using the PRI NT statement in the following format will print into an object that has an ifStreamSend interface, including the roTextField and roSeri
alPort objects:

print #object, "string"

If the expression being printed evaluates to an object with an ifEnum interface, the PRI NT statement will print every item that can be enumerated.

In addition to printing the values of intrinsic types, the PRI NT statement can also be used to print any object that exposes one of the following
interfaces: ifString, iflnt, ifFloat.

WAIT

The WAI T statement can work in conjunction with any object that has an ifMessagePort interface.
Expression Parsing

Any expression that expects a certain type of variable—including Integer, Float, Double, Boolean, or String—can accept an object with an
interface equivalent of that type: ifint, ifFloat, ifDouble, ifBoolean, ifString.

Array Operator
The [] array operator works with any object that has an ifArray or ifAssociativeArray interface, including arrays, associative arrays, and lists.
Member Access Operator

The member access operator (i.e. Dot Operator) works with any object that has an ifAssociativeArray interface. It also works with any object
when used to call a member function (i.e. method). It also has special meaning when used on an roXMLElement or roXMLList object.

6.1-XML Support

=~ Firmware Version 6.1

® Version 7.0
® Version 6.2
® Version 6.1
® Previous Versions

ON THIS PAGE

® Dot Operator
® Attribute Operator
® Examples

® Flikr code clip

BrightScript provides XML support with two BrightScript objects and a set of dedicated language features:

® roXMLElement: This object provides support for parsing, generating, and containing XML.
® roXMLList: This object is used to contain a list of roXMLElement instances.

Dot Operator
The "." Dot Operator has the following features when used with XML objects:

® When used with an roXMLElement instance, the “." Dot Operator returns an roXMLList instance of the child tags that match the dot operand.
If no tags match the operand, an empty list is returned.

® When applied to an roXMLList instance, the "." Dot Operator aggregates the results of performing the above operation on each roXMLElement
in the list.

® When applied to XML, which is technically case sensitive, the "." Dot Operator is still case insensitive. If you wish to perform a case-sensitive
XML operation, use the member functions of the roXMLElement/roXMLList objects.

https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Attribute Operator

The “@” Attribute Operator can be used with an roXMLElement instance to return a named attribute. Though XML is case sensitive, the Attribute
Operator is always case insensitive. If the Attribute Operator is used with an roXMLList instance, it will only return a value if that list contains
exactly one element.

Examples

<?xm version="1.0" encodi ng="utf-8" ?>
<rsp stat="ok">
<phot os page="1" pages="5" perpage="100" total ="500">
<photo i d="3131875696" owner ="21963906@06" secret="f248c84625"
server="3125"
farne"4" title="VNY 16R' ispublic="1" isfriend="0" isfamly="0"
/>
<phot 0 i d="3131137552" owner ="8979045@\07" secret="b22cfde7c4"
server="3078"
farm="4" title="hoot" ispublic="1" isfriend="0" isfam|ly="0" />
<phot o i d="3131040291" owner ="27651538@N06" secr et ="ae25ff 3942"
server ="3286"
farm="4" title="172 « 365 :: Someone once told ne...
1" isfriend="0"
/>
</ phot os>
</rsp>

i spublic=

Given the XML in the above example.xml file, then the following code will return an roXMLList instance with three entries:

rsp=Cr eat eQbj ect ("r oXM_El ement ")
rsp. Parse(ReadAscii Fil e("exanpl e. xm "))

? rsp. photos. photo

The following will return an roXMLElement reference to the first photo (id="3131875696"):

? rsp. phot os. phot o[0]

The following will return an roXMLList reference containing the <photos> tag:

? rsp. phot os

The following will return the string “100":

rsp. phot os@er page

You can use the roXMLElement.GetText() method to return an element’s text: For example, if the variable <bookl! i st > contains the element <bo
ok | ang=eng>The Dawn of Man</book>, then the following code will print the string “The Dawn of Man”.

Print booklist. book. gettext()

Alternatively, using the Attribute Operator will print the string “eng”.

print booklist.book@ ang

Flikr code clip

REM

REM I nt er esti ngness

REM pass an (optional) page of value 1 - 5 to get 100 photos
REM starting at 0/100/200/ 300/ 400

REM

REM returns a list of "Interestingness"” photos with 100 entries
REM

Function GetlnterestingnessPhotolList(http as Object, page=1 As |nteger)
As Obj ect

print "page="; page

http.SetUrl ("http://api.flickr.conlservices/rest/?nmethod=flickr
i nt erestingness. get Li st &api _key=YOURKEYGOESHERE&page="+m d(stri (page),
2))

xm =http. Get ToString()

rsp=Creat etbj ect ("roXM_El enent ")
if not rsp.Parse(xm) then stop

return hel per Phot oLi st FronXM_(http, rsp.photos. photo) 'rsp.

Get Body () . Peek() . Get Body())

End Functi on

Functi on hel per Phot oLi st FromXM_(http As Object, xnmllist As bject,
owner =i nval i d As dynamic) As Obj ect

phot ol i st =Cr eat eCbj ect ("roList")
for each photo in xnlist
phot ol i st. Push(newPhot oFromXM_(http, photo, owner))
end for
return photoli st

End Functi on

REM

REM newPhot oFr omXM.

REM

REM Takes an roXM.El enent Object that is an <photo> ... </photo>
REM Returns an brs object of type Photo

REM photo. GetTitl e()

REM photo. Get | ()

REM phot 0. Get URL()

REM phot 0. Get Omner ()

REM

Functi on newPhot oFromXM.(http As hject, xm As Cbject, owner As
dynam c) As bj ect

photo = Creat eCbject("roAssoci ati veArray")

photo. http=http

phot 0. xm =xmi

phot 0. owner =owner

photo. GetTitl e=function():return mxm @itle:end function

phot o. Get I D=function():return mxm @d: end function

phot 0. Get Omer =pGet Oaner

phot 0. Get URL=pGet URL

return photo
End Function

Functi on pGet Owner() As String
if mowner<>invalid return m owner
return mxnl @wner

End Function

Function pGet URL() As String

a=m xm . Get Attri butes()

url ="http://farm'+a. farm".static.flickr.com"+a.server+"/"+a.
i d+"_"+a.secret+".jpg"

return url
End Function

6.1-Garbage Collection

~ Firmware Version 6.1

Version 7.0
Version 6.2
Version 6.1

[)
[)
[)
® Previous Versions

BrightScript automatically frees strings when they are no longer used, and it will free objects when their reference count goes to zero. This is
carried out at the time the object or string is no longer used; there is no background garbage collection task. The result is a predictable garbage-
collection process, with no unexpected stalls in execution.

Objects may enter a state of circular reference counting: Objects that reference each other will never reach a reference count of zero and will
need to be freed manually using the RunGar bageCol | ect or () method. This method is useful when destroying old presentation data structures
and creating a new presentation.

6.1-Events

= Firmware Version 6.1

Version 7.0
Version 6.2
Version 6.1

[)
[)
L)
® Previous Versions

Events in BrightScript center around an event loop and the roMessagePort object. Most BrightScript objects can post to a message port in the
form of an event object: For example, the roTimer object posts events of the type roTimerEvent when configured intervals are reached.

The following script sets the destination message port using the Set Port () method, waits for an event in the form of an roGpioButton object,
and then processes the event.

print "BrightSign Button-LED Test Runni ng”
p = Creat eQbj ect ("roMessagePort")

gpio = Createoject("roGioControl Port")
gpi 0. Set Port (p)

while true
msg=wai t (0, p)
if type(nsg)="roGpi oButton" then

https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

butn = nmeg. Getlnt()
if butn <=5 then
gpi 0. Set Qut put St at e(but n+17, 1)

print "Button Pressed: ";butn

sl eep(500)

gpi 0. Set Qut put St at e(but n+17, 0)
end if

end if

REM i gnore buttons pressed while flashing | ed above
whi |l e p. Get Message() <>invalid
end while
end while

Note that lines 6-7 can be replaced using the following (and substituting end whi | e with end f or):

For each nsg in p

6.1-Threading Model

~ Firmware Version 6.1

® Version 7.0

® Version 6.2

® Version 6.1

® Previous Versions

BrightScript runs in a single thread. In general, BrightScript object calls are synchronous if they return quickly, and asynchronous if they take a
substantial amount of time to complete. For example, methods belonging to the roArray object are all synchronous, while the Pl ay() method
that is part of the roVideoPlayer object will return immediately (it is asynchronous). As a video plays, the roVideoPlayer object will post messages
to the message port, indicating such events as “media playback finished” or “frame x reached”.

The object implementer decides whether a BrightScript object should launch a background thread to perform a synchronous operation.
Sometimes, an object will feature synchronous and asynchronous versions of the same method.

This threading model ensures that the script writer does not have to deal with mutexes and other synchronization objects. The script is always
single threaded, and the message port is polled or waited on to receive events into the thread. On the other hand, those implementing
BrightScript objects have to consider threading issues: For example, the roList and roMessagePort objects are thread-safe internally, allowing
them to be used by multiple threads.

6.1-Scope

~ Firmware Version 6.1

® Version 7.0
® Version 6.2
® Version 6.1
® Previous Versions

BrightScript uses the following scoping rules:

® Global variables are not supported; however, there is a single hard-coded global variable (“global”) that is an interface to the global
BrightScript object,which contains all global library functions.

Functions declared with the Funct i on statement are global in scope; however, if the function is anonymous, it will still be local in scope.
Local variables exist within the function scope. If a function calls another function, that new function has its own scope.

Labels exist within the function scope.

Block statements such as For / End For and Whil e / End Wi | e do not create a separate scope.

https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

6.1-Intrinsic Objects

= Firmware Version 6.1

® Version 7.0

® Version 6.2

® Version 6.1

® Previous Versions

In general, this manual uses the term “object” to refer to “BrightScript components”, which are C or C++ components with interfaces and member
functions that BrightScript uses directly. With the exception of some core objects (roArray, roAssociativeArray, rolnt, roMessagePort, etc.),
BrightScript objects are platform specific.

You can create intrinsic objects in BrightScript, but these objects are not BrightScript components. There is currently no way to create a
BrightScript component in BrightScript or to create intrinsic objects that have interfaces (intrinsic objects can only contain member functions,
properties, and other objects).

A BrightScript object is simply an roAssociativeArray: When a member function is called from an associative array, a “this” pointer is set to “m”,
and “m” is accessible inside the Function code to access object keys. A “constructor” in BrightScript is simply a normal function at a global scope
that creates an roAssociativeArray instance and fills in its member functions and properties

See the “snake” game in the appendix for examples of creating intrinsic objects.
6.1-Program Statements

ON THIS PAGE

Statement Syntax
LIBRARY

DIM

Assignment ("=")
END

STOP

GOTO

RETURN

PRINT

® [@location]

® TAB (expression)

® POS(x)
FOR / END FOR
FOR EACH IN / END FOR
WHILE / EXIT WHILE
IF/ THEN / ELSE
Block IF / ELSEIF / THEN / ENDIF
Function() As Type / End Function

® "M" Identifier
® Anonymous Functions

=~ Firmware Version 6.1

® Version 7.0

® Version 6.2

® Version 6.1

® Previous Versions

BrightScript supports the following statement types (note that BrightScript is not case sensitive). The syntax of each statement is documented in
more detail later in this chapter.

Li brary

Dim

= (assignment)

End

St op

ot o

Rem(or ")

print

® For / To/ End For / Step / Exit For
® For Each / In / End For / Exit For
® Wile / End Wile / Exit Wile

® Function / End Function / As / Return

https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Example

Function Main() As Void
di m cavenen[10]

cavenen. push("fred")
cavenen. push("barney")
cavenen. push("w | ma")
cavenen. push("betty")

for each cavenan in cavenen
print cavenan

end for

End Functi on

Statement Syntax

Each line may contain a single statement. However, a colon (:) may be used to separate multiple statements on a single line.

Example

nynane = "fred"

i f nynane="fred" then yournane = "barney":print yournamne
LIBRARY

LI BRARY Fil enane. brs

BrightScript 3.0 allows you to add your own BrightScript libraries (.brs files), which can then be utilized by your script. To include a library, use the
LIBRARY statement in your script or at the BrightScript shell prompt. The LIBRARY statement(s) must occur at the beginning of a script, before
any other statements, functions, operators, etc.

The system locates a library by searching the directory containing the current script, as well as the SYS: / scri pt-1i b/ directory. Note that the R
un() function does not currently change the path of a LIBRARY statement to that of the called script (i.e. the system will continue searching the
directory of the caller script). On the other hand, running a script directly from the BrightSign shell does modify the library search path to that of
the called script.

The first statement will include a library in the same folder as the script, while the second will include a library in a sub-folder.

LI BRARY "nyBSL1. brs"
LI BRARY "new | i b/ myBSL2. brs"

The following statement will include the bsICore.brs library, which has some useful BrightScript features, from the SYS: / scri pt-1i b/ directory.

LI BRARY "v30/ bsl Core. brs"

DIM

DI M Nane (dinl, dinR, .., dinK)

The DI M(“dimension”) statement provides a shortcut for creating roArray objects. It sets the variable Name to type “roArray”. It can create arrays
of arrays as needed for multi-dimensionality. The dimension passed to DI Mis the index of the maximum entry to be allocated (i.e. the array initial

size = dimension+1), though the array will be resized larger automatically if needed.

The following two lines create identical arrays.

Di m array[5]
array = Create(bject("roArray", 6, true)

Note
The expression x[a,b] is equivalent to x[a][b].

The following script demonstrates useful operations on a DIM array.
Dimc[5, 4, 6]

For x =1 To 5
For y =1 To 4
For z =1 To 6
c[x, vy, z] =Kk
k =k + 1
End for
End for
End for

k=0
For x =1 To 5
For y =1 To 4
For z =1 To 6

If c[x, y, z] <> k Then print"error" : Stop
if c[x][yl[z] <> k then print "error":stop
k =k +1
End for
End for
End for

Assignment ("="

variabl e = expression

The assignment statement (“=") assigns a variable to a new value.

In each of the following lines, the variable on the left side of the equals operator is assigned the value of the constant or expression on the right
side of the equals operator.

a$="a rose is a rose"
bl=1.23
X=x-z1

END

The END statement terminates script execution normally.

STOP

The STOP statement interrupts script execution, returns a “STOP” error, and invokes the debugger. Use the cont command at the debugger
prompt to continue execution of the script or the st ep command to execute a single step in the script.

GOTO

GOTO | abel

The GOTO statement transfers program control to the line number specified by Label. The GOTOlabel statement results in a branching operation.
A label is an identifier terminated with a colon on a line that contains no other statements or expressions.

Example

nyl abel :

print "Hello Wrld"

got o nyl abel
RETURN

RETURN expr essi on

The RETURN statement returns from a function back to its caller. If the function is not type Void, RETURN can also return a value to the caller.

PRINT

PRI NT [#out put _object], [@ocation], itemlist

The PRINT statement prints an item or list of items in the console. The item(s) may be strings, integers, floats, variables, or expressions. An
object with an iflnt, ifFloat, or ifString interface may also be printed. If the out put _obj ect is specified, this statement will print to an object with
an ifStreamSend interface.

If the statement is printing a list of items, the items must be separated with semicolons or commas. If semicolons are used, spaces are not
inserted between printed items; if commas are used, the cursor will automatically advance to the next print zone before printing the next item.

Positive numbers and zero are printed with a leading space (without a plus sign). Spaces are not inserted before or after strings.

Example

> x=b5:print 25; " is equal to"; x "2
> run
25 is equal to 25

Example

> a$="string"

> print a$;a$, a%;" ";a$
> run
stringstring string string

Each print zone in the following example is 16 characters wide. The cursor moves to the next print zone each time a comma is encountered.

> print "zone 1","zone 2","zone 3","zone 4"
> run
zone 1 zone 2 zone 3 zone 4

Example

> print "print statenent #1 ";
> print "print statenent #2"
> run

print statenent #1 print statenent #2

In some cases, semicolons can be dropped. For example, the following statement is legal:

Print "this is a five "5"11"

A trailing semicolon overrides the cursor-return so that the next PRI NT statement begins where the last left off. If no trailing punctuation is used
with a PRI NT statement, the cursor drops to the beginning of the next line.

[@location]

If the console you are printing to has the ifTextField interface, you can use the @character to specify where printing will begin.

Example

print #mtext field, @i dth*(height/2-1)+(w dth-1en(nsg$))/2, nsg$;

Whenever you use PRI NT @on the bottom line of the display, an automatic line-feed causes all displayed lines to move up one line. To prevent
this from happening, use a trailing semicolon at the end of the statement.

TAB (expression)

This statement moves the cursor to the specified position on the current line (modulo the width of the console if the TAB position is greater than
the console width).

Example

print tab(5)"tabbed 5";tab(25)"tabbed 25"

Note the following about the TAB statement:

The TAB statement may be used several times in a PRI NT list.

No punctuation is required after a TAB statement.

Numerical expressions may be used to specify a TAB position.

The TAB statement cannot be used to move the cursor to the left.

If the cursor is beyond the specified position, the TAB statement is ignored.

POS(X)

This statement returns an integer that indicates the current cursor position from 0 to the maximum width of the window. This statement requires a
dummy argument in the form of any numeric expression.

print tab(40) pos(0) "prints 40 at position 40

print "these" tab(pos(0)+5)"words" tab(pos(0)+5)"are";
print tab(pos(0)+5)"evenly" tab(pos(0)+5)"spaced"

FOR / END FOR

FOR counter_variable = initial_value TO final _value STEP increnment / END FOR
The FOR statement creates an iterative loop that allows a sequence of program statements to be executed a specified number of times.

Theinitial_val ue, final _val ue, andi ncrenent can be any expression. The first time the FOR statement is executed, these three
variables are evaluated and their values are saved; changing the variables during the loop will have no affect on the operation of the loop.
However, the count er _vari abl e must not be changed, or the loop will not operate normally. The first time the FOR statement is executed, the

counter is set to both the value and type of the i ni ti al _val ue.

At the beginning of each loop, the value of the count er _vari abl e is compared with the f i nal _val ue. If the value of the count er _vari abl e
is greater than the f i nal _val ue, the loop will complete and execution will continue with the statement following the END FOR statement. If, on
the other hand, the counter has not yet exceeded the f i nal _val ue, control passes to the first statement after the FOR statement. If increment is
a negative number, the loop will complete when the value of the count er _vari abl e is less than the fi nal _val ue.

When program flow reaches the END FOR statement, the counter is incremented by the specified increment amount (or decremented if increment
is a negative value). If the STEP [i ncrenent] language is not included in the FOR statement, the increment defaults to 1.

Use EXI T FORto exit a FOR block prematurely.

The following script decrements i at the beginning of each loop until it is less than 1.

for i=10 to 1 step -1
print i
end for

FOR EACH IN/ END FOR

FOR EACH item I N object / END FOR

The FOR EACH statement can iterate through a set of items in any object that has an ifEnum interface (i.e. an enumerator). The FOR block is
terminated with the END FOR statement. Objects that are ordered intrinsically (such as roList) are enumerated in order, while objects that have no
intrinsic order (such as roAssociativeArray) are enumerated in apparent random order. It is possible to delete entries as they are enumerated.

Use EXI T FORto exit a FOR block prematurely.
The following objects can be enumerated: roList, roArray, roAssociativeArray, roMessagePort.

The following script iterates over an associative array in random order, prints each key/value pair, then deletes it.

aa={joe: 10, fred: 11, sue: 9}
For each n in aa

Print n;aa[n]

aa. del et e[n]
end for

WHILE / EXIT WHILE
WHI LE expression / EXIT WH LE

A VHI LE loop executes until the specified expression is false. Use the EXI T WHI LE statement to exit a WHI LE block prematurely.

k=0
whi | e k<>0

k=1

Print "l oop once"
end while

while true
Print "l oop once"
Exit while

End while

IF/ THEN/ ELSE

| F expression THEN statenents [ELSE statenents]

This is the single-line form of the IF THEN ELSE statement; see the next section for more details about the block form of the IF THEN
ELSE statement.

The | F statement instructs the interpreter to test the following expression. If the expression is True, control will proceed to the statements
immediately following the expression. If the expression is False, control will jump to either the matching ELSE statement (if there is one) or to the
next program line after the block.

Example

if x>127 then print "out of range" : end

THEN is optional in the above and similar statements. However, THEN is sometimes required to eliminate ambiguity, as in the following example

if y=mthen mro 'won't work without THEN

Block IF / ELSEIF / THEN / ENDIF
The block (i.e. multi-line) form of IF / THEN / ELSE has the following syntax:

| f Bool eanExpression [Then]
[Block]
[ElselfStatenent+]
[El seStatenent]

End |f

El selfStatenent ::=
El sel f Bool eanExpression [Then]
[Block]

El seStatenent ::=
El se
[Block]

Example

vp_nsg_| oop
nmsg=wait (tiut, p)
if type(nsg)="rovi deoevent"
t hen
i f debug then print "video event"; nmsg.getint()
if 'm0 and neg.getint() = nmeden then
i f debug then print "videofinished"
ret code=5
return
endi f
el se if type(nsg)="rogpi obutton" then
i f debug then print "button press"; nsg
if escO and nsg=b0 then retcode=1:return
if escl and nsg=bl then retcode=2:return
if esc2 and nmsg=b2 then retcode=3:return
if esc3 and nsg=b3 then retcode=4:return
else if type(nsg)=" Invalid" then
i f debug then print "tineout”
ret code=6
return

endi f

goto vp_nsg_| oop

Function() As Type / End Function
Functi on name(paraneter As Type, .) As Type

Each function has its own scope.

A function is declared using the Funct i on() statement. The parentheses may contain one or more optional parameters; parameters can also
have default values and expressions.

The type of each parameter may be declared. The return type of the function may also be declared. If a parameter type or return type is not
declared, it is Dynamic by default. Intrinsic types are passed by value (and a copy is made), while objects are passed by reference. The Sub state
ment can be used instead of Funct i on as a shortcut for creating a function with return type Void.

A parameter can be one of the following types:

Integer
Float
Double
String
Object
Dynamic

The function return can be one of the following types:

* Void
Integer
Float
Double
String
Object
Dynamic

"M" Identifier

If a function is called from an associative array, then the local variable mis set to the associative array in which the function is stored. If the
function is not called from an associative array, then its mvariable is set to an associative array that is global to the module and persists across
calls.

The midentifier should only be used for the purpose stated above: We do not recommend using mas a general-purpose identifier.

Example

sub mai n()
obj ={
add: add
a: 5
b: 10
}

obj . add()
print obj.result
end sub

function add() As void
mresult=ma+mb
end function

Anonymous Functions

A function without a name declaration is considered anonymous.

The following is a simple anonymous function declaration:

nyfunc=function (a, b)
Return a+b
end function

print nyfunc(l,2)

Anonymous functions can also be used with associative-array literals:

q = {

starring : function(o, e)

str = e. Get Body()

print "Starring: " + str

toks = box(str).tokenize(",")

for each act in toks

actx = box(act).trinm()

if actx <> "" then

print "Actor: [" + actx + "]"
0. Act or s. Push(act x)

endi f

end for

return O

end function

}

g.starring(nyobj, nyxm)

6.1-Built-In Functions
ON THIS PAGE

Type()

GetGlobalAA()

Rnd()

Box()

Run()

Eval()
GetLastRunCompileError()
GetLastRunRuntimeError()

~ Firmware Version 6.1

Version 7.0
Version 6.2
Version 6.1

[)
[)
[)
® Previous Versions

BrightScript features a set of built-in, module-scope, intrinsic functions. A number of file I/O, string, mathematics, and system functions are also
available via the roGlobal object.

Type()
Type(a As Variable) As String

This function returns the type of the passed variable and/or object.

GetGlobalAA()

Get d obal AA() As Obj ect

This function fetches the global associative array for the current script.

Rnd()

Rnd(range As Integer) As I|nteger
Rnd(0) As Fl oat

If passed a positive, non-zero integer, this function returns a pseudo-random integer between 1 and the argument value. The range includes the
argument value: For example, calling Rnd(55) will return a pseudo-random integer greater than 0 and less than 56.

If the argument is 0, this function returns a pseudo-random Float value between 0 and 1.

Note
The Rnd() functions utilize a pseudo-random seed number that is generated internally and not accessible to the user.

Box()

Box(type As Dynamic) As Cbject

This function returns an object version of the specified intrinsic type. Objects will be passed through.

Example
b = box("string")
b = box(b) ' b does not change

Run()

Run(file_name As String, [optional _arg As Dynamic, .]) As Dynamc
Run(file_nanmes As roArray, [optional _arg As Dynamic, .]) As Dynamc

This function runs one or more scripts from the current script. You may append optional arguments, which will be passed to the Mai n() function
of the script(s). The called script may also return arguments to the caller script.

If a string file name is passed, the function will compile and run the corresponding file. If an array of files is passed, the function will compile each
file, link them together, and run them.

Example

https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Sub Mai n()

Run("test.brs")
Br eakl f RunErr or (LI NE_NUM

Pri nt

Run("test2.brs", "arg 1", "arg 2")

if Run(["filel.brs","file2.brs"])<>4 then stop
Br eakl f RunErr or (LI NE_NUM

st op
End Sub

Sub Breakl f RunError (I n)
el =Get Last RunConpi | eError ()
if el=invalid then

el se

end
End Sub

Eval()

el =CGet Last RunRunt i neError ()
if el =&hFC or el =&hE2 then return
' FC==ERR_NORMAL_END, E2=ERR VALUE_ RETURN

print "Runtinme Error (line ";In;"): ";el
stop
print "conpile error (line ";In;")"
for each e in el

for each i in e

print i;": ";e[i]

end for
end for
stop

Eval (code_sni ppet As String) As Dynamic

This function runs the passed code snippet in the context of the current function. The function compiles the snippet, then executes the byte-code.
If the code compiles and runs successfully, it will return zero. If the code compiles successfully, but encounters a runtime error, it will return an
integer indicating the error code (using the same codes as the Get Last RunRunt i neErr or () function). If compilation fails, it will return an roList

object; the roList structure is identical to that of the Get Last RunConpi | eError () function.

The Eval () function can be useful in two cases:

® When you need to dynamically generate code at runtime.

®* When you need to execute a statement that could result in a runtime error, but you don’t want code execution to stop.

Example

PRI NT Eval ("1/0") 'Returns a divide by zero error.

GetLastRunCompileError()

Get Last RunConpi | eError () As rolist

This function returns an roList object containing compile errors (or Invalid if no errors occurred). Each roList entry is an roAssociativeArray object
containing the following keys:

ERRSTR: The compile error type (as String)

The following are possible ERRNOvalues:

FI LESPEC: The file URI of the script containing the error (as String)
ERRNO The error number (as Integer)
LI NENO The line number where the error occurs (as Integer)

Error Code Description Expanded Description

&hBF 191 ERR_NW ENDWHI LE statement occurs without statement.

&hBE 190 ERR_MISSING_ENDWHILE WHI LE statement occurs without ENDWHI LE statement.
&hBC 188 ERR_MISSING_ENDIF End of script reached without finding an ENDI F statement.
&hBB 187 ERR_NOLN No line number found.

&hBA 186 ERR_LNSEQ Line number sequence error.

&hB9 185 ERR_LOADFILE Error loading file.

&hB8 184 ERR_NOMATCH MATCH statement does not match.

&hB7 183 ERR_UNEXPECTED_EOF Unexpected end of string encountered during string compilation.
&hB6 182 ERR_FOR_NEXT_MISMATCH Variable on NEXT does not match FOR.
&hB5 181 ERR_NO_BLOCK_END
&hB4 180 ERR_LABELTWICE Label defined more than once.
&hB3 179 ERR_UNTERMED_STRING Literal string does not have end quote.
&hB2 178 ERR_FUN_NOT_EXPECTED

&hB1 177 ERR_TOO_MANY_CONST

&hB0O 176 ERR_TOO_MANY_VAR

&hAF 175 ERR_EXIT_WHILE_NOT_IN_WHILE
&hAE 174 ERR_INTERNAL_LIMIT_EXCEDED
&hAD 173 ERR_SUB_DEFINED_TWICE

&hAC 172 ERR_NOMAIN

&hAB 171 ERR_FOREACH_INDEX_TM

&hAA 170 ERR_RET_CANNOT_HAVE_VALUE
&A9 169 ERR_RET _MUST HAVE_VALUE
&hA8 168 ERR_FUN_MUST_HAVE_RET_TYPE
&hA7 167 ERR_INVALID_TYPE

&hA6 166 ERR_NOLONGER Feature no longer supported.
&hA5 165 ERR_EXIT_FOR_NOT_IN_FOR

&hA4 164 ERR_MISSING_INITILIZER

&hA3 163 ERR_IF_TOO_LARGE

&hA2 162 ERR_RO_NOT_FOUND

&A1l 161 ERR_TOO_MANY_LABELS

&hA0 160 ERR_VAR_CANNOT_BE_SUBNAME

&h9F 159 ERR_INVALID_CONST_NAME

&h9E 158 ERR_CONST_FOLDING

GetLastRunRuntimeError()

Get Last RunRunt i meError () As |nteger

This function returns the error code that resulted from the last Run() function.

These codes indicate a normal result:

Error Code

&hFF
&hFC
&hE2

&hEO

255

252

226

224

Description Expanded Description

ERR_OKAY

ERR_NORMAL_END Execution ended normally, but with termination (e.g. END, shell "exit", window closed).
ERR_VALUE_RETURN Return executed with value returned on the stack.

ERR_NO_VALUE_RETURN Return executed without value returned on the stack.

The following codes indicate runtime errors:

Error Code Description

&hFE
&hFD
&hFB
&hFA
&hF9
&hF8
&hF7
&hF6
&hF5
&hF4
&hF3
&hF2
&hF1
&hFO
&hEF
&hEE
&hED
&hEC
&hEB
&hE9
&hE8
&hE7
&hE6
&hE5
&hE4
&hE3
&hE1
&hEO
&hDF
&h20
&hiC
&h1A

&h18

254
253
251
250
249
248
247
246
245
244
243
242
241
240
239
238
237
236
235
233
232
231
230
229
228
227
225
224
223
32

28

26

24

ERR_INTERNAL
ERR_UNDEFINED_OPCD
ERR_UNDEFINED_OP
ERR_MISSING_PARN
ERR_STACK_UNDER
ERR_BREAK

ERR_STOP

ERR_ROO

ERR_RO1

ERR_RO2

ERR_RO3
ERR_TOO_MANY_PARAM
ERR_WRONG_NUM_PARAM
ERR_RVIG
ERR_NOTPRINTABLE
ERR_NOTWAITABLE
ERR_MUST_BE_STATIC
ERR_RO4

ERR_NOTYPEOP
ERR_USE_OF_UNINIT_VAR
ERR_TM2
ERR_ARRAYNOTDIMMED
ERR_USE_OF UNINIT_BRSUBREF
ERR_MUST HAVE RETURN
ERR_INVALID_LVALUE
ERR_INVALID_NUM_ARRAY_IDX
ERR_UNICODE_NOT_SUPPORTED
ERR_NOTFUNOPABLE
ERR_STACK_OVERFLOW
ERR_CN

ERR_STRINGTOLONG

ERR_OS

ERR_TM

Expanded Description
Unexpected condition occurred.
Opcode could not be handled.

Expression operator could not be handled.

No value to pop off the stack.

scri pt Break() function called.

STOP statement executed.

bscNewComponent failed because object class not found.

BrightScript member function call does not have right number of parameters.
BrightScript member function not found in object or interface.

BrightScript interface not a member of the object.

Too many function parameters to handle.

Number of function parameters incorrect.

Function returns a value, but is ignored.

Value not printable.

WAI T statement cannot be applied to object because object does not have an roMessagePort interface.
Interface calls from rotINTERFACE type must be static.

"." Dot Operator used on object that does not contain legal object or interface reference.
Operation attempted on two type-less operands.

Uninitialized variable used illegally.

Non-numeric index applied to array.

Reference to uninitialized SUB.

Left side of the expression is invalid.

Number of array indexes is invalid.

Continue (cont or c) not allowed.

String space has run out.

A Type Mismatch (string /number operation mismatch) has occurred.

&hl14 20 ERR_DIV_ZERO

&hl12 18 ERR_DD Attempted to re-dimension array.
&h10 16 ERR_BS Array subscript out of bounds.
&hOE 14 ERR_MISSING_LN

&h0C 12 ERR_OUTOFMEM

&h08 8 ERR_FC Invalid parameter passed to function/array (e.g. a negative matrix dim or square root).
&h06 6 ERR_OD Out of data (READ).
&h04 4 ERR_RG Return without Gosub.

&h02 2 ERR_SYNTAX

&h00 O ERR_NF Next without For .

6.1-Core Library Extension

= Firmware Version 6.1

Version 7.0
Version 6.2
Version 6.1

[)
[)
[)
® Previous Versions

There are a number of built-in functions that are not part of the BrightScript Core Library. You can use the LIBRARY statement to include this
subset of functions:

LI BRARY "v30/ bsl Core. brs"

bslIBrightScriptErrorCodes() As roAssociativeArray

Returns an associative array of name/value pairs corresponding to BrightScript error codes and their descriptions.

bslGeneralConstraints() As roAssociativeArray

Returns an associative array of name/value pairs corresponding to system constants.

bslUniversalControlEventCodes() As roAssociativeArray

Returns an associative array of name/value pairs corresponding to the remote key code constraints.

AsciiToHex(ascii As String) As String

Returns a hex-formatted version of the passed ASCII string.

HexToAscii(hex As String) As String

Returns an ASCII-formatted version of the passed hex string.

HexTolnteger(hex As String) As Integer

Returns the integer value of the passed hex string.
6.1-BrightScript Debug Console

~ Firmware Version 6.1

® Version 7.0
® Version 6.2
® Version 6.1

https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2

® Previous Versions

If, while a script is running, a runtime error occurs or a STOP statement is encountered, the BrightSign application will enter the BrightScript
debug console. You can also access the debug console at bootup by following these steps:

. Power on the device.

. Wait at least 5 seconds after the power LED (pwr) lights up.

. Use a paperclip or pen to press and hold the SVC button on the side of the player.

. Wait until the br i ght si gn> prompt appears in the terminal.

. Enter bri ght si gn> at the prompt. This will take you to the BrightScript debug console.

O b~ WNPE

The debug console can be accessed from a terminal program using a null-modem cable connected to the RS-232, GPIO, or VGA port
(depending on the player model). Networked players can also be accessed via Telnet or SSH.

The console scope is set to the function that was running when a runtime error or STOP statement occurred. While in the console, you can type in
any BrightScript statement; it will then be compiled and executed in the current context.

In most cases, the debug console is the default device for the PRI NT statement.

Console Commands

The following console commands are currently available:

bt Print a backtrace of call-function context frames.
classes List all public classes.

contorc Continue script execution.

counts List count of BrightScript Component instances.

da Show disassembly and bytecode for this function.
down or d Move one position down the function context chain.
exit Exit the debug shell.

gc Run the garbage collector and show collection statistics.
hash Print the internal hash-table histograms.

last Show the last line that executed.

method <class> List methods provided by specified class.

method <class>.<interface> List methods provided by the specified interface or class.

list List the current source of the current function.

Id Show line data (source records)

next Show the next line to execute.

bsc List all allocated BrightScript Component instances.
stats Show statistics.

stepors Step one program statement.

t Step one statement and show each executed opcode.
up oru Move one function up the context chain.

var Display local variables and their types/values.

printor p or ? Print variable value or expression.

6.1-BrightScript Versions

w Firmware Version 6.1

® Version 7.0

http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370673607/Telnet+and+SSH
https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript

® Version 6.2
® Version 6.1
® Previous Versions

BrightScript Version Matrix
January 9, 2009

HD20000 1.3 Branch HD2000 Compact Main Line
2.0 Branch

SnapShot Date 1/7/2008 7/16/2008 1/9/2009
Defxxx, on, gosub, clear, random, data, read, restore, err, errl, let, clear, line numbers X X

Intrinsic Arrays X
Compiler

AA & dot Op & m reference

Sub/Functions

ifEnum & For Each

For/Next Does Not Always Execute At Least Once

X X X X X X X

Exit For

Invalid Type. Errors that used to be Int Zero are now Invalid. Added rolnvalid; Invalid Autoboxing
Array's use roArray; Added ifArray

Uninit Var Usage No Longer Allowed

Sub can have "As" (like Function)

roXML Element & XML Ops dot and @

Type() Change: Now matches declaration names (eg. Integer not roINT32)
Added roBoolean

Added dynamic Type; Type now optional on Sub/Functions

And/Or Don't Eval un-needed Terms

Sub/Fun Default Parameter Values (e.g. Sub (x=5 As Integer))

AA declaration Op{}

Array Declaration Op []

Change Array Op from () to []

Anonymous Functions

Added Circ. Ref. Garbage Collector

X X

Add Eval(), Run(), and Box()

6.1-Reserved Words

~ Firmware Version 6.1

® Version 7.0
® Version 6.2
® Version 6.1
® Previous Versions

AND ENDSUB LINE_NUM RND
CREATEOBJECT ENDWHILE M* STEP
DIM EXIT NEXT STOP
EACH EXITWHILE NOT SuUB
EACH FALSE OBJFUN TAB

ELSE FOR OR THEN

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

END FUNCTION POS TO

ENDFOR GOTO PRINT TRUE
ENDFUNCTION IF REM TYPE
ENDIF INVALID RETURN WHILE

* Although Mis not strictly a reserved word, it should not be used as an identifier outside of its intended purpose.
6.1-Example Script

= Firmware Version 6.1

Version 7.0
Version 6.2
Version 6.1

[)
[)
L)
® Previous Versions

The following code uses GPIO buttons 1, 2, 3, 4 for controls. It will work on any BrightSign model that has a video output and a GPIO port.

REM

REM The ganme of Snake

REM denponstrates BrightScript progranm ng concepts
REM June 22, 2008

REM
REM Every Bri ght Scri pt program nust have a single Min()
REM

Sub Mai n()
gane_boar d=newGaneBoar d()

VWhile true
gane_boar d. Set Snake(newSnake(gane_board. Start X(), gane_board.
StartY()))
gane_board. Draw()
ganme_boar d. Event Loop()
i f ganme_board. GaneOver () then ExitWile
End Wil e
End Sub

REM R R I S b S o S R R I o

REM kkhkkhkhkkkkkhkhkhhkhkkkhkkhk hhhkhkkkhkhk hhhkkkhkkhdhhhkhkkkhk k hhkkkkk k k khkkxkk**x*

REM kkhkkhkkkkkkhkhkhkhkkkk*k RS S I S S O S
REM kkhkkhkkkkkkhkhkhkhkkkk*k @'\/E B()A\RD (BJEC'I’ kkhkkhkhkhkkkkkhkhkhhkhkkkhkkhkikhhkk*x
REM kkhkkhkkkkkkhkhkhkhkkkk*k kkhkkhkhkhkhkkkkhkhkhhkhkrkkhkkrkhkhhkxx

REM R O kS I R R S Sk R R Rk kR e Sk R Rk S

REM R S S I R R I e i S i S R ARk Sk R ek kR Rk Rk S

REM
REM An exanpl e BrightScript constructor. "newGaneBoard()" is regular
Functi on of nodul e scope

https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

REM Bright Script Objects are "dynam c" and created at runtime. They
have no "cl ass".

REM The obj ect container is a BrightScript Conponent of type
roAssocitiveArray (AA).

REM The AA is used to hold nenber data and nmenber functions.

REM

Functi on newGaneBoard() As Object

ganme_boar d=Cr eat eCbj ect ("r oAssoci ati veArray")
Bri ght Scri pt Conponent of type/class roAssociativeArray

gane_board. I nit=gblnit ' Add an entry to
the AA of type roFunction with value gbDraw (a sub defined in this
nodul e)

gane_boar d. Dr aw=gbDr aw

gane_boar d. Set Snake=ghSet Snake

ganme_boar d. Event Loop=gbEvent Loop

ganme_boar d. GaneOver =ghGaneCQver

ganme_board. St art X=gbSt art X

gane_board. Start Y=gbStartyY

gane_board. I nit() " Call the Init
menber function (which is gblnit)

Create a

return gane_board

End Functi on

REM

REM gblnit() is a nenmber function of the gane_board BrightScript Object.
REM When it is called, the "this" pointer "m' is set to the appropriate
i nstance by

REM t he BrightScript bytecode interpreter

REM

Function gblnit() As Void
REM
REM button presses go to this nessage port
REM

m buttons = Creat eObj ect ("roMessagePort")
mgpio = CreateObject("roGioControl Port")
m gpi 0. Set Port (m but t ons)

REM

REM determ ne optimal size and position for the snake ganeboard
REM

CELLW D=16 " each cell on gane in pixels width

CELLHI =16 ' each cell in pix height

MAXW DE=30 " max width (in cells) of ganme board

MAXHI =30 ' max height (in cells) of gane board

vi dnode=Cr eat e(bj ect ("r oVi deoMode")
w=ci nt (vi dnode. Get ResX()/ CELLW D)

i f w>MAXW DE t hen w = MAXW DE
h=ci nt (vi dnode. Get ResY()/ CELLHI)
i f h>MAXH then h=MAXHI

xpi x = cint((vidnode. Get ResX() - wWCELLWD)/2)
board on screen

ypi X = cint((vidnmode. GetResY() - h*CELLHI)/ 2)
board on screen

REM

REM Create Text Field with square char cell size
REM

net a=Cr eat eObj ect ("roAssoci ati veArray")

net a. AddRepl ace(" Char W dt h", CELLW D)

nmet a. AddRepl ace(" Char Hei ght ", CELLHI)

center gane

center gane

net a. AddRepl ace(" Backgr oundCol or ", &H202020) ‘very dark grey

net a. AddRepl ace(" Text Col or ", &HOOFFO0O) ' Green

mtext field=CreateCbject("roTextField", xpix,ypix,w, h, meta)

if type(mtext field)<>"roTextField" then
print "unable to create roTextField 1"
stop
endi f
End Function

REM
REM As Object refers to type BrightScript Conponent
REM m t he "this" pointer
REM
Sub gbSet Snake(snake As (bject)
m snake=snake
End Sub

Function gbStartX() As Integer
return cint(mtext_field. GetWdth()/2)
End Function

Function gbStartY() As Integer

return cint(mtext_field. GetHeight()/2)
End Function
Functi on gbEvent Loop() As Void

ti ck_count =0

while true

nmsg=wai t (250, m buttons) " wait for a button,

second) ti meout

or 250ns (1/4 a

if type(nsg)="roGpi oButton" then
if meg. Getlnt()=1 msnake. TurnNorth()
if neg.Getlnt()=2 msnake. TurnSout h()
if neg.Getlnt()=3 m snake. TurnEast ()
if meg. Getlnt()=4 m snake. Tur n\ést ()
else 'here if time out happened, nobve snake forward
tick _count=tick count+1
if tick _count=6 then
tick _count=0
i f msnake. MakeLonger(mtext _field) then return

el se
i f msnake. MoveForward(mtext _field) then return
endi f
endi f
end while

End Functi on

Sub gbDr aw()

REM

REM gi ven a roTextField hject in "mtext _field", draw a box around
its edge

REM

sol i d=191 " use asc("*") if graphics not enabl ed
mtext field. ds()

for w=0 to mtext field. GetWdth()-1
print #mtext field, @v, chr(solid);
print #mtext _field, @ntext field GetWdth()*(mtext field.
Get Hei ght () -1) +w, chr(solid);
end for

for h=1 to mtext_field.GetHeight()-2
print #mtext field @*mtext field GetWdth(),chr(solid);
print #mtext field @*mtext field GetWdth()+mtext field.
GetWdth()-1,chr(solid);
end for

m snake. Draw(m text _fi el d)
End Sub

Functi on gbGanmeQOver () As Bool ean
meg$= " GA ME OVER"
nmsg0$=" "
width = mtext_field. GetWdth()
hei ght = mtext_field. GetHeight()

while true
print #mtext field, @i dth*(height/2-1)+(wi dth-1en(nsg$))/2,
nsg$;
sl eep(300)
print #mtext field, @i dth*(height/2-1)+(w dth-1en(nsg$))/ 2,
msg0$;
sl eep(150)
REM Get Message returns the nessage object, or anint O if no
nmessage avail abl e
If mbuttons. Get Message() <> invalid Then Return Fal se
endwhi | e

End Functi on

REM R S S S o R S R kO I R I O O

REM kkhkkhkhkkkkkhkhkhhkhkkkhkkhkhhhhkhkkkhkhkhhhhkhkkhkkhkdhhhkhkkkhkhd hhkkkkk k k khkkxkkk,*x*

REM kkhkkhkkkkkkhkhkhkhkhkkkkhkk*k kkhkkhkkkkkkhkhkhhkhkkkkhkkhkhhhkkkk*k
REM kkhkkhkkkkkkhkhkhkhkkkkkhkhk*k SNAKE mJEC‘I’ kkhkkhkkkkkkhkhkhhkhkkkikkhkikhhhkkkkx*k
REM kkhkkhkkkkkkhkhkhhkkkkrkhkhk*k kkhkkhkhkkkkhkkhkhkhhkhkkkhkhkrkhhkhkhkkkx*k

REM R IR Sk kR R e S Sk S R Rk Ik S S b kA R ARk kS R

REM R e Sk S I R R I I kR R TRk kR R Rk R R Rk

REM

REM construct a new snake Bright Scri pt object

REM

Functi on newSnake(x As Integer, y As Integer) As bject

' Create AA BrightScript Conponent; the container for a "BrightScript
hj ect™

snake=Cr eat eCbj ect ("r oAssoci ati veArray")

snake. Dr aw=snkDr aw

snake. Tur nNor t h=snkTur nNort h

snake. Tur nSout h=snkTur nSout h

snake. Tur nEast =snkTur nEast

snake. Tur nWest =snkTur n\ést

snake. MoveFor war d=snkMoveFor war d

snake. MakeLonger =snkMakeLonger

snake. AddSegnment =snkAddSegnent

snake. Er aseEndBi t =snkEr aseEndBi t

REM

REM a "snake" is a list of |line segnents

REM a |ine segnent is an roAssociativeArray that conains a length
and direction (given by the x,y delta needed to nove as it is drawn)

REM

snake.seg list = Create(oject("roList")
snake. AddSegnent (1, 0, 3)

REM

REM The X, Y pos is the position of the head of the snake
REM

snake. snake_X=x

snake. snake_Y=y

snake. body=191 ' use asc("*") if graphics not enabl ed.
snake. dx=1 ' default snake direction / nove offset
snake. dy=0 ' default snake direction / nove of fset

return snake

End Functi on

Sub snkDraw(text field As hject)
x=m snake_ X
y=m snake_Y
for each seg in mseg |ist
xdel t a=seg. xDel ta
ydel t a=seg. yDel t a
for j=1 to seg.Len
text field.SetCursorPos(x, V)
text _field. SendByt e(m body)
x=x+xdel t a
y=y+ydel t a
end for
end for
End Sub

Sub snkEraseEndBit(text _field As Object)
x=m snake_ X
y=m snake_Y
for each seg in mseg |ist
x=x+seg. Len*seg. xDel t a
y=y+seg. Len*seg. yDel ta
end for

text _field.SetCursorPos(x, V)
text _field. SendByte(32) ' 32 is ascii space, could use asc(" ")

End Sub

Functi on snkMoveForward(text field As Object)As Bool ean

m EraseEndBit (text _field)

tail=mseg_list.GetTail ()

REM

REM t he followi ng shows how you can use an AA's nmenber functions to
performthe sane

REM functions the BrightScript . operator does behind the scenes
for you (when used on an AA)

REM there is not point to this | onger nmethod other than illustration

REM

| en=tail.Lookup("Len") ' sane as len = tail.Len (or tail
len, BrightScript syntax is not case sensative)

len = len-1

if len=0 then

m seg_l i st. RenoveTail ()
el se

tail. AddRepl ace("Len",len) ' sanme as tail.Len=len
endi f

return m MakelLonger (text field)
End Functi on

Function snkiMakeLonger (text field As Object) As Bool ean
m snake_X=m snake_X+m dx
m snake_Y=m snake_Y+m dy
text field.SetCursorPos(m snake X, m snake_Y)
if text field. GetValue()=mbody then return true
text _field. SendByt e(m body)
head = m seg_list. Get Head()
head. Len=head. Len+1
return fal se
End Function

Sub snkAddSegnent (dx As Integer, dy As Integer, len as Integer)

aa=Creat ebj ect ("roAssoci ati veArray")

aa. AddRepl ace("xDelta",-dx) ' line segnents draw fromhead to tai
aa. AddRepl ace("yDel ta", - dy)

aa. AddRepl ace("Len", | en)

m seg_l i st. AddHead(aa)

End Sub

Sub snkTurnNorth()

if mdx<>0 or mdy<>-1 then m dx=0: m dy=-1: m AddSegnent (m dx, m dy,
0) "north
End Sub

Sub snkTur nSout h()

if mdx<>0 or mdy<>1 then m dx=0: m dy=1: m AddSegnent (m dx, m dy,
0) 'sout h
End Sub

Sub snkTur nEast ()

if mdx<>-1 or mdy<>0 then mdx=-1: mdy=0: m AddSegnent (m dx, m
dy, 0) " east
End Sub

Sub snkTur nWest ()

if mdx<>1 or mdy<>0 then m dx=1: m dy=0: m AddSegnent (m dx, m dy,
0) " west
End Sub

6.1-Object Reference
ON THIS PAGE

Interfaces and Methods
Classes

Object and Class Name Syntax
Zones

Event Loops

= Firmware Version 6.1

® Version 7.0

® Version 6.2

® Version 6.1

® Previous Versions

BrightSign players use a standardized library of BrightScript objects to expose functionality for software development. To publish a new API for
interacting with BrightSign hardware, we create a new BrightScript object.

The pages in this section provide definitions for objects that can be used in BrightScript. A brief description, a list of interfaces, and the member
functions of the interfaces are provided for each object class. While most BrightScript objects have self-contained pages, some objects are
grouped on the same page if they are closely related or depend on one another for functionality.

Here is a sample of objects that are used frequently when creating applications in BrightScript:

roVideoMode Configures video output and interacts with displays using CEC/EDID.

roRectangle Used to define zones/widgets on the screen. This object is passed to many other objects to define their screen area, including ro
VideoPlayer, rolmagePlayer, roimageWidget, roHtmIWidget, roClockWidget, and roCanvasWidget.

roVideoPlay Plays video files, streams, and HDMI input.
er

rolmagePla Displays images.
yer

roHtmIWidg Displays local or remote HTML content using the Chromium rendering engine.
et

roNetworkC Used to configure Ethernet, WiFi, and local network parameters.
onfiguration

roDevicelnf Used to retrieve a wide array of system information, including model type, device serial number, and firmware version.
ormation

Interfaces and Methods

Every BrightScript object consists of one or more "interfaces." An interface consists of one or more "methods." For example, the roVideoPlayer obj
ect has several interfaces, including ifMessagePort. The interface ifMessagePort has one method: Set Port () .

The abstract interface ifMessagePort is exposed and implemented by both the roControlPort and the roVideoPlayer objects. Once the SetPort()
method is called, these objects will send their events to the supplied message port. This is discussed more in the Event Loops section below.

https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Example

p = Createbject("roMessagePort")
vi deo = CreateObject("roVi deoPl ayer™)
gpio = CreateCbject("roControl Port", "BrightSign")

gpi 0. Set Port (p)
vi deo. Set Port (p)

The above syntax makes use of a shortcut provided by the language: The interface name is optional, unless it is needed to resolve name
conflicts. For example, the following two lines of code carry out the exact same function:

gpi 0. Set Port (p)
gpi o.i f MessagePort . Set Port (p)

BrightScript Objects consist only of interfaces, and interfaces define only methods. There is no concept of a "property” or variable at the object or
interface level. These must be implemented as "set" or "get" methods in an interface.

Classes

A class name is used to create a BrightScript object. For example, the class name for a video playback instance is roVideoPlayer, so, to initialize
a video playback instance, you would use code similar to the following:

Example

vi deo = Creat ebj ect ("roVi deoPl ayer™)

Note that "video" can be any name that follows the syntax outlined in the next section.

Object and Class Name Syntax
Class names have the following characteristics:

® Must start with an alphabetic character (a — z).
® May consist of alphabetic characters, numbers, or the "_" (i.e. underscore) symbol.

® Are not case sensitive.
® May be of any reasonable length.

Zones
With the BrightSign Zones feature, you can divide the screen into rectangles and play different content in each rectangle.

Depending on the BrightSign model, zones can contain video, images, HTML content, audio, a clock, or text. 4Kx42, XDx32, and XDx30 models
can display two video zones on screen, while the HDx22, HDx20, and LSx22 models can only display one. There can be multiple zones of other
types on the screen. A text zone can contain simple text strings or can be configured to display an RSS feed in a ticker-type display.

As of firmware 6.0.x, zone support is enabled by default. When zones are enabled, the image layer is on top of the video layer by default. The
default behavior can be modified using theroVideoMode.SetGraphicsZOrder() method.

Zone support can be disabled by calling Enabl eZoneSupport (f al se). When zones are not enabled, the image layer is hidden whenever
video is played, and the video layer is hidden whenever images are played.

Event Loops
When writing anything more than a very simple script, an "event loop" will need to be created. Event loops typically have the following structure:

1. Wait for an event.
2. Process the event.
3. Return to step 1.

An event can be any number occurrences: a button has been pressed; a timer has been triggered; a UDP message has been received; a video
has finished playing back; etc. By convention, event scripting for BrightScript objects follows this work flow:

1. An object of the type roMessagePort is created by the user's script.

2. Objects that can send events (i.e. those that support the ifMessagePort/ifSetMessagePort interface) are instructed to send their events to
this message port using the Set Por t () method. You can set up multiple message ports and have each event go to its own message
port, but it is usually simpler to create one message port and have all the events sent to this one port.

3. The script waits for an event. The actual function to do this is ifMessagePort.WaitMessage(), but the built-in Wai t () statement in
BrightScript allows you to do this more easily.

4, If multiple event types are possible, your script should determine which event the wait function received, then process it. The script then
jumps back to the wait.

An event can be generated by any BrightScript Object. For example, the class roControlPort sends events of type roControlDown and roControlUp
. The roControlDown implements the ifint interface, which allows access to an integer. An event loop needs to be aware of the possible events it
can receive and be able to process them.

6.1-Global Functions
ON THIS PAGE

® ifGlobal

® CreateObject(name As String) As Object

RestartScript() As Void

RestartApplication() As Void

Sleep(milliseconds As Integer)

asc(letter As String) As Integer

chr(character As Integer) As String

len(target_string As String) As Integer

str(value As Double) As String

stri(value As Integer) As String

val(target_string As String) As Double

abs(x As Double) As Double

atn(x As Double) As Double

csng(x As Integer) As Float

cdbl(x As Integer) As Double

cint(x As Double) As Integer

cos(x As Double) As Double

exp(x As Double) As Double

fix(x As Double) As Integer

int(x As Double) As Integer

log(x As Double) As Double

sgn(x As Double) As Integer

sgnl(x As Integer) As Integer

sin(x As Double) As Double

tan(x As Double) As Double

sqr(x As Double) As Double

Left(target_string As String, n As Integer) As String
Right(target_string As String, n As Integer) As String
Stringl(n As Integer, character As Integer) As String

String(n As Integer, character As String) As String
Mid(target_string As String, start_position As Integer, length As Integer) As String
Instr(start_position As Integer, search_text As String, substring_to_find As String) As Integer
Getlnterface(object As Object, ifname As String) As Interface
Wait(timeout As Integer, port As Object) As Object
ReadAsciiFile(file_path As String) As String
WriteAsciiFile(file_path As String, buffer As String) As Boolean
ListDir(path As String) As Object

MatchFiles(path As String, pattern_in As String) As Object
LCase(target_string As String) As String

UCase(target_string As String) As String
DeleteFile(file_path As String) As Boolean
DeleteDirectory(diretory As String) As Boolean
CreateDirectory(directory As String) As Boolean
RebootSystem() As Void

ShutdownSystem() As Void

UpTime(dummy As Integer) As Double

FormatDrive(drive As String, fs_type As String) As Boolean
EjectDrive(drive As String) As Boolean

CopyFile(source As String, destination As String) As Boolean
MoveFile(a As String, b As String) As Boolean
MapFilenameToNative(path As String) As String
strtoi(target_string As String) As Integer

rnd(a As Dynamic) As Dynamic

RunGarbageCollector() As roAssociativeArray
GetDefaultDrive() As String

SetDefaultDrive(a As String)

EnableZoneSupport(enable As Boolean)
EnableAudioMixer(a As Boolean)

Pi() As Double

ParseJson(json_string As String) As Object
FormatJson(json As roAssociativeArray, flags As Integer) As String

= Firmware Version 6.1

Version 7.0
Version 6.2
Version 6.1

[)
[)
[)
® Previous Versions

BrightScript provides a set of standard, module-scope functions that are stored in the global object. If a global function is referenced, the compiler
directs the runtime to call the appropriate global object member. When calling a global function, you do not need to use the dot operator to
reference the roGlobal object.

Note that global trigonometric functions accept and return values in radians, not degrees.

ifGlobal

CreateObject(name As String) As Object

Creates a BrightScript object corresponding to the specified class name. This method returns invalid if object creation fails. Some objects have
optional parameters in their constructor, which must be passed after the class nane.

sw = Createbject("roGi oControl Port")
serial = CreateObject("roSerialPort”, 0, 9600)

RestartScript() As Void

Exits the current script. The system then scans for a valid autorun file to run.

RestartApplication() As Void

Restarts the BrightSign application.

Sleep(milliseconds As Integer)

Instructs the script to pause for a specified amount of time without wasting CPU cycles. The sleep interval is specified in milliseconds.

asc(letter As String) As Integer

Returns the ASCII code for the first character of the specified string. A null-string argument will cause an error.

chr(character As Integer) As String

https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Returns a one-character string containing a character reflected by the specified ASCII or control. For example, because quotation marks are
normally used as string delimiters, you can pass ASCII code 34 to this function to add quotes to a string.

len(target_string As String) As Integer

Returns the number of characters in a string.

str(value As Double) As String

Converts a specified float value to a string. This method also returns a string equal to the character representation of a value. For example, if "A"
is assigned a value of 58.5, then calling st r (A) will return "58.5" as a string.

stri(value As Integer) As String

Converts a specified integer value to a string. This method also returns a string equal to the character representation of a value. For example, if
"A" is assigned a value of 58.5, then calling stri(A) will return "58" as a string.

val(target_string As String) As Double

Returns a number represented by the characters in the string argument. This is the opposite of the str() function. For example, if "A" is assigned
the string "58", and "B" is assigned the string "5", then calling val (A+". " +B) will return the float value 58.5.

abs(x As Double) As Double
Returns the absoule vale of the argument x.
atn(x As Double) As Double

Returns the arctangent (in radians) of the argument x (i.e. At n(x) returns “the angle whose tangent is x"). To get the arctangent in degrees,
multiply At n(x) by 57.29578.

csng(x As Integer) As Float

Returns a single-percision float representation of the argument x.
cdbl(x As Integer) As Double
Returns a double-percision float representation of the argument x.

cint(x As Double) As Integer

Returns an integer representation of the argument x by rounding to the nearest whole number.

cos(x As Double) As Double

Returns the cosine of the arugment x. The argument must be in radians. To obtain the cosine of x when x is in degrees, use Cos(x*. 01745329)

exp(x As Double) As Double

Returns the natural exponential of x. This is the inverse of the | og() function.

fix(x As Double) As Integer

Returns a truncated representation of the argument x. All digits to the right of the decimal point are removed so that the resultant value is an
integer. For non-negative values of x, fi x(x) is equal to i nt (x) . For negative values of x, fi x(x) is equal toi nt (x) +1.

int(x As Double) As Integer

Returns an integer representation of the argument x using the largest whole number that is not greater than the argument. For example, i nt
(2. 2) returns 2, while fi x(-2.5) returns -3.

log(x As Double) As Double

Returns the natural logarithm of the argument x(i.e. log,(x)). This is the inverse of the exp() function. To find the logarithm of a number to a base b
, use the following formula: logy,(x) = log,(x)/log(b).

sgn(x As Double) As Integer

Returns an integer representing how the float argument x is signed: -1 for negative, 0 for zero, and 1 for positive.

sgnl(x As Integer) As Integer

Returns an integer representing how the integer argument x is signed: -1 for negative, 0 for zero, and 1 for positive.

sin(x As Double) As Double

Returns the sine of the argument x. The argument must be in radians. To obtain the sine of x when x is in degrees, use si n(x*. 01745329) .

tan(x As Double) As Double

Returns the tangent of the argument x. The argument must be in radians. To obtain the tangent of x when x is in degrees, use t an(x*.
01745329) .

sqr(x As Double) As Double

Returns the square root of the argument x. This function is the same as x"(1/2), but calculates the result faster.

Left(target_string As String, n As Integer) As String

Returns the first n characters of the specified string.

Right(target_string As String, n As Integer) As String

Returns the last n characters of the specified string.

Stringl(n As Integer, character As Integer) As String

Returns a string composed of a character symbol repeated n times. The character symbol is passed to the method as an ASCII code integer.

String(n As Integer, character As String) As String

Returns a string composed of a character symbol repeated n times. The character symbol is passed to the method as a string.

Mid(target_string As String, start_position As Integer, length As Integer) As String

Returns a substring of the target string. The first integer passed to the method specifies the starting position of the substring, and the second
integer specifies the length of the substring. The start position of a string begins with 1.

Instr(start_position As Integer, search_text As String, substring_to_find As String) As Integer

Returns the position of a substring within a string. This function is case sensitive and returns 0 if the specified substring is not found. The start
position of a string begins with 1.

Getlnterface(object As Object, ifname As String) As Interface

Returns a value of the type Interface. All objects have one or more interfaces. In most cases, you can skip interface specification when calling an
object component. This will not cause problems as long as the method names within a function are unique.

Wait(timeout As Integer, port As Object) As Object

Instructs the script to wait on an object that has an ifMessagePort interface. This method will return the event object that was posted to the
message port. If the timeout is specified as zero, Wi t () will wait indefinitely; otherwise, Wait() will return Invalid after the specified number of
milliseconds if no messages have been received.

p = Creat eCbj ect ("roMessagePort")

sw = CreateCbject("roGpioControl Port")

sw. Set Port (p)

nmsg=wai t (0, p)

print type(nsg) " shoul d be roGpi oButton
print nmsg.CGetlnt() ' button number

ReadAsciiFile(file_path As String) As String

Reads the specified text file and returns it as a string.

WriteAsciiFile(file_path As String, buffer As String) As Boolean
Creates a text file at the specified file path. The text of the file is passed as the second parameter. This method cannot be used to edit files: A
preexisting text file will be overwritten if it has the same name and directory path as the one being created.

Note
The roCreateFile object provides more flexibility if you need to create or edit files.

ListDir(path As String) As Object

Returns an roList object containing the contents of the specified directory path. File names are converted to all lowercase.

MatchFiles(path As String, pattern_in As String) As Object
Takes a directory to look in (it can be as simple as "." or "/*) and a pattern to be matched and then returns an roList containing the results. Each
listed result contains only the part of the filename that is matched against the pattern, not the full path. The match is only applied in the specified

directory; you will get no results if the pattern contains a directory separator. The pattern is a case insensitive wildmat expression. It may contain
the following special characters:

® ? -- Matches any single character.

® * .. Matches zero or more arbitrary characters.

® [...] -- Matches any single character specified within the brackets. The closing bracket is treated as a member of the character class if it
immediately follows the opening bracket (i.e. "[]]" matches a single closed bracket). Within this class, "-" can be used to specify a range unless
it is the first or last character (e.g. "[A-Cf-h"] is equivalent to "[ABCfgh]"). A character class may be negated by specifying "" as the first
character. To match a literal of this character, place it elsewhere in the class.

',I\'lr(l);especial characters "?", "*", and "[" lose their function if preceded by a single "\", and a single "\" can be matched using "\\".
LCase(target_string As String) As String
Converts the specified string to all lower case.
UCase(target_string As String) As String
Converts the specified string to all upper case.
DeleteFile(file_path As String) As Boolean

Deletes the file at the specified file path. This method returns False if the delete operation fails or if the file does not exist.

DeleteDirectory(diretory As String) As Boolean

Deletes the specified directory. This method will recursively delete any files and directories that are necessary for removing the specified
directory. This method returns False if it fails to delete the directory, but it may still delete some of the nested files or directories.

CreateDirectory(directory As String) As Boolean

Creates the specified directory. Only one directory can be created at a time. This method returns True upon success and False upon failure.

RebootSystem() As Void

Causes a soft reboot.

ShutdownSystem() As Void

UpTime(dummy As Integer) As Double
Returns the uptime of the system (in seconds) since the last reboot.

FormatDrive(drive As String, fs_type As String) As Boolean

Formats the specified drive using one of the file systems listed below. This function returns True upon success and False upon failure:

* vfat (DOS/Windows file system): Readable and writable by Windows, Linux, and MacOS.

® ext 2 (Linux file system): Writable by Linux and readable by Windows and MacOS with additional software.

® ext 3 (Linux file system): Writable by Linux and readable by Windows and MacOS with additional software. This file system uses journaling
for additional reliability.

EjectDrive(drive As String) As Boolean

Ejects the specified drive (e.g. "SD:") and returns True if successful. If the script is currently accessing files from the specified drive, the ejection
process will fail.

CopyFile(source As String, destination As String) As Boolean

Copies the file at the specified source file-path name to the specified destination file-path name. The function returns True if successful and False
in the event of failure.

MoveFile(a As String, b As String) As Boolean
Moves the specified source file to the specified destination. The function returns True if successful and False in the event of failure.

Note
Both path names must be on the same drive.

MapFilenameToNative(path As String) As String

Converts the specified BrightScript-style path to the corresponding native path and returns it as a string (e.g. the path "SD:/mydir* will be returned
as "/storage/sd/mydir").

strtoi(target_string As String) As Integer

Converts the target string to an integer. Any non-integer characters (including decimal points and spaces), and any numbers to the right of a non-
integer character, will not be part of the integer output.

rnd(a As Dynamic) As Dynamic

RunGarbageCollector() As roAssociativeArray

Destroys objects that are currently in a state of circular reference counting. BrightScript normally removes any objects that become unreferenced
as part of its automated garbage collection algorithm. However, objects that reference each other will never reach a reference count of zero, and
will need to be destroyed manually using this method.

This method is useful when destroying old presentation data structures and generating a new presentation. This method returns an associative
array outlining the results of the garbage-collection process.

GetDefaultDrive() As String

Returns the current default drive complete with a trailing slash. When running autorun.brs, the drive containing the autorun is designated as the
current default.

SetDefaultDrive(a As String)

Sets the current default drive, which does not need to include a trailing slash. This method does not fail; however, if the specified default drive
does not exist, it will not be possible to retrieve anything.

EnableZoneSupport(enable As Boolean)

Allows for display of multiple video, HTML, image, and text zones. As of firmware 6.0.x, zone support is enabled by default.

EnableAudioMixer(a As Boolean)

Pi() As Double

Returns the value of pi as a double-precision floating-point number.

ParseJson(json_string As String) As Object

Parses a string formatted according to the RFC4627 standard and returns an equivalent BrightScript object, which can consist of the following:
Booleans, integers, floating point numbers, strings, roArray objects, and roAssociativeArray objects. The Par seJson() method has the

following properties:

® |nvalid will be returned if the string is not syntactically correct.
® Any roAssociativeArray objects that are returned will be case sensitive.
® An error will be returned if an roArray or roAssociativeArray is nested more than 256 levels deep.

The following script demonstrates how to use Par seJson() to process a JSON object containing the titles and URLSs of a set of images.

JSON Script
{
"photos" : |
{
"title" : "View fromthe hotel™
"url" : "http://exanple.cominmges/00012.| pg"
H
{
"title" : "Relaxing at the beach",
"url™ : "http://exanple.cominmges/00222.] pg"
b
{
"title" : "Flat tire",
"url" : "http://exanple.cominmges/00314. | pg"
}
]
}

BrightScript

searchRequest = CreateObject ("roUrl Transfer")
sear chRequest . Set URL(" http://api.exanpl e. conl servi ces/ rest/ get Phot 0s")
response = ParseJson(searchRequest. Get ToString())
For Each photo In response. phot os
CGet | mage(photo.title, photo.url)
End For

FormatJson(json As roAssociativeArray, flags As Integer) As String

Converts an associative array to a JSON string (i.e. formatted according to the RFC4627 standard). The following are supported data types:
Boolean, Integer, Float, String, roArray, and roAssociativeArray. If the flags parameter is set to 0 or not specified, non-ASCII characters are
escaped in the output string as “WXXXX", where “XXXX" is the hexadecimal representation of the Unicode character value. If the f | ags paramet
eris set to 1, non-ASCII characters are not escaped. If arrays or associative arrays are nested more than 256 levels deep, an error will occur. If
an error occurs, an empty string will be returned.

6.1-BrightScript Core Objects

=~ Firmware Version 6.1

® Version 7.0
® Version 6.2
® Version 6.1
® Previous Versions

This section describes objects that provide core BrightScript functionality.

6.1-roArray
6.1-roAssociativeArray
6.1-roBoolean
6.1-roByteArray
6.1-roDouble, rolntrinsicDouble
6.1-roFunction

6.1-rolnt, roFloat, roString
6.1-roList
6.1-roMessagePort
6.1-roRegex
6.1-roXMLElement
6.1-roXMLList

6.1-roArray

=~ Firmware Version 6.1

® Version 7.0
® Version 6.2
® Version 6.1
® Previous Versions

ON THIS PAGE

® ifArray

® Peek() As Dynamic
Pop() As Dynamic
Push(a As Dynamic)
Shift() As Dynamic
Unshift(a As Dynamic)
Delete(a As Integer) As Boolean
Count() As Integer
Clear()

® Append(a As Object)
® fEnum

® Reset()

® Next() As Dynamic

® |sNext() As Boolean

® |sEmpty() As Boolean
® ifArrayGet

® GetEntry(a As Integer) As Dynamic
® ifArraySet

® SetEntry(a As Integer, b As Dynamic)

This object stores objects in a continuous array of memory locations. Since an roArray contains BrightScript components, and there are object
wrappers for most intrinsic data types, entries can either be different types or all of the same type.

Object Creation: The roArray object is created with two parameters.

Createbj ect ("roArray"”, size As Integer, resize As Bool ean)

® sij ze: The initial number of elements allocated for an array.
® resize: If true, the array will be resized larger to accommodate more elements if needed. If the array is large, this process might take some
time.

The DI Mstatement may be used instead of the Cr eat eObj ect () function to create a new array. The DI Mstatement can be advantageous
because it automatically creates array-of-array structures for multi-dimensional arrays.

https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifArray
Peek() As Dynamic
Returns the last (highest index) array entry without removing it.

Pop() As Dynamic

Returns the last (highest index) entry and removes it from the array.

Push(a As Dynamic)

Adds a new highest index entry to the end of the array.

Shift() As Dynamic

Removes index zero from the array and shifts all other entries down by one unit.

Unshift(a As Dynamic)

Adds a new index zero to the array and shifts all other entries up by one unit.

Delete(a As Integer) As Boolean

Deletes the indicated array entry and shifts all above entries down by one unit.

Count() As Integer

Returns the index of the highest entry in the array plus one (i.e. the length of the array).

Clear()

Deletes every entry in the array.

Append(a As Object)

Appends one roArray to another. If the passed roArray contains entries that were never set to a value, they are not appended.

Note
The two appended objects must be of the same type.

ifEnum
Reset()
Resets the position to the first element of enumeration.

Next() As Dynamic

Returns a typed value at the current position and increment position.

IsNext() As Boolean

Returns True if there is a next element.

IsEmpty() As Boolean

Returns True if there is not an exact statement.

ifArrayGet

GetEntry(a As Integer) As Dynamic

Returns an array entry of a given index. Entries start at zero. If an entry that has not been set is fetched, Invalid is returned.

ifArraySet

SetEntry(a As Integer, b As Dynamic)

Sets an entry of a given index to the passed type value.

6.1-roAssociativeArray
ON THIS PAGE

® fEnum

® Reset() As Void

® Next() As Dynamic

® |sNext() As Boolean

® |sEmpty() As Boolean
® fAssociativeArray

AddReplace(key As String, value As Object) As Void
Lookup(key As String) As Object

DoesExist(key As String) As Boolean

Delete(key As String) As Boolean

Clear() As Void

SetModeCaseSensitive() As Void

LookupCi(a As String) As Dynamic

Append(a As Object) As Void

=~ Firmware Version 6.1

Version 7.0
Version 6.2
Version 6.1

L]
[]
L]
® Previous Versions

This object allows you to generate an associative array (also known as a map, dictionary, or hash table), a data structure that associates objects
with string keys.

The roAssociativeArray object is created with no parameters:
Creat e(bj ect ("roAssoci ati veArray")

ifEnum
Reset() As Void
Resets the position to the first element of enumeration.

Next() As Dynamic

Returns a typed value at the current position and increment position.

IsNext() As Boolean

Returns True if there is a next element.

IsEmpty() As Boolean

Returns True if there is not an exact statement.
ifAssociativeArray

AddReplace(key As String, value As Object) As Void

Adds a new entry to the associative array, associating the supplied object with the supplied string. Only one object may be associated with a
string, so any existing object linked to that string is discarded.

Lookup(key As String) As Object

https://brightsign.atlassian.net/wiki/spaces/DOC/pages/370672718/BrightScript
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Looks for an object in the associative array linked to the specified key. If there is no object associated with the string, then this method will return
Invalid.

DoesExist(key As String) As Boolean

Looks for an object in the associative array linked to the specified key. If there is no associated object, then False is returned. If there is such an
object, then True is returned.

Delete(key As String) As Boolean

Looks for an object in the associative array linked to the specified key. If there is such an object, then it is deleted and True is returned. If not,
then False is returned.

Clear() As Void

Removes all objects from the associative array.

SetModeCaseSensitive() As Void

Makes all subsequent actions case sensitive. All lookups and created keys are case insensitive by default.
LookupCi(a As String) As Dynamic

Looks for an object in the array associated with the specified string. This method functions similarly to Lookup(), with the exception that key
comparisons are always case insensitive, regardless of case mode.

Append(a As Object) As Void

Appends a second associative array to the first.

Example

aa = CreateCbject("roAssociativeArray")
aa. AddRepl ace("Bright", "Sign")

aa. AddRepl ace(" TMOL", 42)

print aa.Lookup("TMOL")

print aa.Lookup("Bright")

The above script produces the following:

42
Si gn

6.1-roBoolean
ON THIS PAGE

® ifBoolean

® GetBoolean() As Boolean
® SetBoolean(a As Boolean)

=~ Firmware Version 6.1

® Version 7.0
® Version 6.2
® Version 6.1
® Previous Versions

This is the object equivalent for the Boolean intrinsic type. It is useful in the following situations:

® When an object is needed instead of an intrinsic value: For example, if a Boolean is added to roList, it will be automatically wrapped in an r
oBoolean object by the language interpreter. When a function that expects a BrightSc