
1. BrightScript . 4
1.1 Language Reference . 4

1.1.1 Variables, Literals, and Types . 4
1.1.2 Operators . 8
1.1.3 Objects and Interfaces . 11
1.1.4 XML Support . 12
1.1.5 Garbage Collection . 16
1.1.6 Events . 16
1.1.7 Threading Model . 17
1.1.8 Scope . 17
1.1.9 Intrinsic Objects . 17
1.1.10 Program Statements . 18
1.1.11 Built-In Functions . 26
1.1.12 Core Library Extension . 30
1.1.13 BrightScript Debug Console . 31
1.1.14 BrightScript Versions . 32
1.1.15 Reserved Words . 33
1.1.16 Example Script . 34

1.2 Object Reference . 39
1.2.1 Global Functions . 41
1.2.2 BrightScript Core Objects . 48

1.2.2.1 roArray . 49
1.2.2.2 roAssociativeArray . 50
1.2.2.3 roBoolean . 53
1.2.2.4 roByteArray . 53
1.2.2.5 roDouble, roIntrinsicDouble . 56
1.2.2.6 roFunction . 57
1.2.2.7 roInt, roFloat, roString . 57
1.2.2.8 roJRE . 61
1.2.2.9 roList . 62
1.2.2.10 roMessagePort . 65
1.2.2.11 roRegex . 66
1.2.2.12 roXMLElement . 67
1.2.2.13 roXMLList . 70

1.2.3 Presentation and Widget Objects . 73
1.2.3.1 roAudioConfiguration . 74
1.2.3.2 roAudioOutput . 75
1.2.3.3 roAudioPlayer . 76
1.2.3.4 roAudioPlayerMx . 81
1.2.3.5 roAudioEventMx . 84
1.2.3.6 roCanvasWidget . 85
1.2.3.7 roClockWidget . 88
1.2.3.8 roHdmiInputChanged, roHdmiOutputChanged . 91
1.2.3.9 roHtmlWidget . 91
1.2.3.10 roHtmlWidgetEvent . 101
1.2.3.11 roImageBuffer . 102
1.2.3.12 roImagePlayer . 103
1.2.3.13 roImageWidget . 108
1.2.3.14 roRectangle . 111
1.2.3.15 roStreamQueue . 113
1.2.3.16 roTextField . 115
1.2.3.17 roTextWidget . 117
1.2.3.18 roTextWidgetEvent . 121
1.2.3.19 roTouchScreen . 122
1.2.3.20 roTouchEvent, roTouchCalibrationEvent . 126
1.2.3.21 roVideoEvent, roAudioEvent . 127
1.2.3.22 roVideoInput . 129
1.2.3.23 roVideoMode . 131
1.2.3.24 roVideoPlayer . 140

1.2.4 File Objects . 154
1.2.4.1 roAppendFile . 155
1.2.4.2 roCreateFile . 156
1.2.4.3 roReadFile . 158
1.2.4.4 roReadWriteFile . 159

1.2.5 Hashing and Storage Objects . 161
1.2.5.1 roBlockCipher . 161
1.2.5.2 roBrightPackage . 162
1.2.5.3 roDiskErrorEvent . 165
1.2.5.4 roDiskMonitor . 166
1.2.5.5 roHashGenerator . 167
1.2.5.6 roPassKey . 168
1.2.5.7 roRegistry . 168
1.2.5.8 roRegistrySection . 169
1.2.5.9 roSqliteDatabase . 170
1.2.5.10 roSqliteEvent . 172

1.2.5.11 roSqliteStatement . 173
1.2.5.12 roStorageAttached, roStorageDetached . 175
1.2.5.13 roStorageHotplug . 176
1.2.5.14 roStorageInfo . 178
1.2.5.15 roVirtualMemory . 180

1.2.6 Content Management Objects . 181
1.2.6.1 roAssetCollection . 181
1.2.6.2 roAssetFetcher . 183
1.2.6.3 roAssetFetcherEvent . 186
1.2.6.4 roAssetFetcherProgressEvent . 189
1.2.6.5 roAssetPool . 190
1.2.6.6 roAssetPoolFiles . 192
1.2.6.7 roAssetRealizer . 193
1.2.6.8 roAssetRealizerEvent . 194
1.2.6.9 roSyncSpec . 195

1.2.7 Networking Objects . 197
1.2.7.1 roDatagramReceiver . 198
1.2.7.2 roDatagramSender . 199
1.2.7.3 roDatagramSocket . 200
1.2.7.4 roDatagramEvent . 201
1.2.7.5 roHttpServer . 202
1.2.7.6 roHttpEvent . 205
1.2.7.7 roKeyStore . 207
1.2.7.8 roMediaServer . 209
1.2.7.9 roMediaStreamer . 210
1.2.7.10 roMediaStreamerEvent . 212
1.2.7.11 roMimeStream . 213
1.2.7.12 roMimeStreamEvent . 214
1.2.7.13 roNetworkAdvertisement . 214
1.2.7.14 roNetworkConfiguration . 215
1.2.7.15 roNetworkAttached . 228
1.2.7.16 roNetworkDetached . 229
1.2.7.17 roNetworkDiscovery . 230
1.2.7.18 roNetworkHotplug . 232
1.2.7.19 roNetworkStatistics . 233
1.2.7.20 roPtp . 234
1.2.7.21 roPtpEvent . 234
1.2.7.22 roRssArticle . 235
1.2.7.23 roRssParser . 236
1.2.7.24 roRtspStream . 237
1.2.7.25 roSnmpAgent . 238
1.2.7.26 roSnmpEvent . 239
1.2.7.27 roStreamByteEvent . 240
1.2.7.28 roStreamConnectResultEvent . 240
1.2.7.29 roStreamEndEvent . 241
1.2.7.30 roStreamLineEvent . 242
1.2.7.31 roSyncManager . 242
1.2.7.32 roSyncManagerEvent . 245
1.2.7.33 roTCPServer . 245
1.2.7.34 roTCPConnectEvent . 246
1.2.7.35 roUPnPActionResult . 247
1.2.7.36 roUPnPController . 248
1.2.7.37 roUPnPDevice . 249
1.2.7.38 roUPnPSearchEvent . 250
1.2.7.39 roUPnPService . 251
1.2.7.40 roUPnPServiceEvent . 252
1.2.7.41 roTCPStream . 253
1.2.7.42 roUrlTransfer . 255
1.2.7.43 roUrlEvent . 262

1.2.8 Input/Output Objects . 266
1.2.8.1 roBtManager . 267
1.2.8.2 roBtClientManager . 269
1.2.8.3 roBtClientManagerEvent . 271
1.2.8.4 roBtClient . 271
1.2.8.5 roBtClientEvent . 273
1.2.8.6 roCecInterface . 273
1.2.8.7 roCecRxFrameEvent . 274
1.2.8.8 roCecTxCompleteEvent . 275
1.2.8.9 roChannelManager . 276
1.2.8.10 roControlPort . 280
1.2.8.11 roControlUp, roControlDown . 286
1.2.8.12 roGpioButton . 287
1.2.8.13 roGpioControlPort . 287
1.2.8.14 roIRReceiver . 288
1.2.8.15 roIRDownEvent, roIRRepeatEvent, roIRUpEvent . 289

1.2.8.16 roIRTransmitter . 290
1.2.8.17 roIRTransmitCompleteEvent . 291
1.2.8.18 roIRRemote . 292
1.2.8.19 roIRRemotePress . 293
1.2.8.20 roKeyboard . 294
1.2.8.21 roKeyboardPress . 295
1.2.8.22 roSequenceMatcher . 296
1.2.8.23 roSequenceMatchEvent . 297
1.2.8.24 roSerialPort . 298

1.2.9 System Objects . 301
1.2.9.1 roDeviceCustomization . 301
1.2.9.2 roDeviceInfo . 302
1.2.9.3 roResourceManager . 306
1.2.9.4 roSystemLog . 307

1.2.10 Date and Time Objects . 309
1.2.10.1 roDateTime . 309
1.2.10.2 roNetworkTimeEvent . 311
1.2.10.3 roSystemTime . 312
1.2.10.4 roTimer . 315
1.2.10.5 roTimerEvent . 317
1.2.10.6 roTimeSpan . 318

1.2.11 Legacy Objects . 319
1.2.11.1 roRtspStreamEvent . 319
1.2.11.2 roSyncPool . 320
1.2.11.3 roSyncPoolEvent . 323
1.2.11.4 roSyncPoolFiles . 323
1.2.11.5 roSyncPoolProgressEvent . 324

BrightScript

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

BrightScript is a powerful scripting language for building media and networked applications for embedded devices. This language features
integrated support for a lightweight library of BrightScript objects, which are used to expose the API of the platform (device) that is running
BrightScript. The BrightScript language connects generalized script functionality with underlying components for networking, media playback, UI
screens, and interactive interfaces; BrightScript is optimized for generating user-friendly applications with minimal programmer effort.

The BrightScript section is divided into two categories:

Language Reference: Outlines the characteristics of the BrightScript language, such as syntax, operators, statements, types, core
library, etc.
Object Reference: Provides a directory of publicly available objects, interfaces, and methods that comprise the BrightScript API.

Language Reference

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

The following are some general characteristics of BrightScript, as compared to other common scripting languages:

BrightScript is not case sensitive.
Statement syntax is similar to Python, Basic, Ruby, and Lua (and dissimilar to C).
Like JavaScript and Lua, objects and named data-entry structures are associative arrays.
BrightScript supports dynamic typing (like JavaScript) and declared types (like C and Java).
Similar to .Net and Java, BrightScript uses "interfaces" and "components" (i.e. objects).

BrightScript code is compiled into bytecode that is run by an interpreter. The compilation step occurs every time a script is loaded and run. Similar
to JavaScript, there is no separate compilation step that results in a saved binary file.

BrightScript and its component architecture are written in 100% C for speed, efficiency, and portability. Since many embedded processors do not
have floating-point units, BrightScript makes extensive use of the "integer" type. Unlike some languages (including JavaScript), BrightScript only
uses floating point numbers when necessary.

Variables, Literals, and Types

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

Note

If you're having trouble viewing the above file, make sure you are accessing this site via HTTPS (e.g.).https://docs.brightsign.biz

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/

ON THIS PAGE

Identifiers
Types
Type Declaration Characters
Literals (Constants)
Array Literals
Associative Array Literals
Invalid Object Return
Numbers

Dynamic Typing
Type Conversion
Type Conversion and Accuracy

Identifiers

Identifiers are names of variables, functions, and labels. They also apply to BrightScript object methods (i.e. functions) and interfaces (which
appear after a "." Dot Operator). Identifiers have the following rules:

Must start with an alphabetic character (a-z).
May consist of alphabetic characters, numbers, or the underscore symbol ("_").
Are not case sensitive.
May be of any length.
May not be a .reserved word
() May end with an optional type declaration ("$" for a string, "%" for an integer, "!" for a float, "#" for a double).variables only

Examples
a
boy5
super_man$
42%

Types

BrightScript supports both dynamic typing and declared types. This means that every value has a type determined at runtime, but variables can
also be instructed to always contain a value of a specified type. If a value is assigned to a variable that has a specified type, the type of the value
will be converted to the variable type if possible. If conversion is impossible, a runtime error will occur.

A variable that does not end in a type declaration may change its type dynamically. For example, the statement will create an integer, while a a=4
following statement specifying that will change the type of the variable a to a string.a="hello"

BrightScript supports the following types:

Boolean: True or False
Integer: A 32-bit signed integer number
Float: The smallest floating point number format supported by either the hardware or software
Double: The largest floating point number format supported by either the hardware or software. Although Double is an intrinsically
understood type, it is implemented internally with the object.roIntrinsicDouble
String: A sequence of ASCII (not UTF-8) characters. BrightScript uses two intrinsic string states:

Constant strings: A statement such as will create an intrinsic constant string.s="astring"

roString instances: Once a string is used in an expression, it becomes an instance. For example, the statement roString s =
 will cause the intrinsic string to convert to an instance. If this is followed by the statement , s + "bstring" s roString s2 = s

the value will be a reference to , not a copy of it. The behavior of reference counting strings is new to BrightScript version s2 s
3.0.

Object: A reference to a BrightScript object (i.e. a native component). Note that the function will not return "Object" but the type type()
of object instead (e.g. ,). Also note that there is no separate type for intrinsic BrightScript Objects. All intrinsic roList roVideoPlayer
BrightScript Objects are built on the object type.roAssociativeArray
Interface: An interface in a BrightScript Object. If a "." Dot Operator is used on an interface type, the member must be static (since there
is no object context).

Invalid: A type that can have only one value: . This type is returned in various instances when no other type is valid (for Invalid
example, when indexing an array that has never been sent). It can also be assigned to a variable with the statement .var = invalid

The following are examples of different types. The statement is a shortcut for , while the function returns a string that identifies ? print type()
the type of the passed expression.

BrightScript> ?type(1)
Integer

BrightScript> ?type(1.0)
Float

BrightScript> ?type("hello")
String

BrightScript> ?type(CreateObject("roList"))
roList

BrightScript> ?type(1%)
Integer

BrightScript> b!=1
BrightScript> ?type(b!)
Float

BrightScript> c$="hello"
BrightScript> ?type(c$)
String

BrightScript> d="hello again"
BrightScript> ?type(d)
String

BrightScript> d=1
BrightScript> ?type(d)
Integer

BrightScript> d=1.0
BrightScript> ?type(d)
Float

BrightScript>e=invalid
BrightSCript>?type(e)
Invalid

Type Declaration Characters

A type declaration may be used at the end of a variable or literal to fix its type. Variables with the same identifier but separate types are separate
variables: For example, defining a$ and a% would create two independent variables.

Character Type Examples

$ String A$, ZZ$

% Integer A1%, SUM%

! Single-Precision (Float) B!, N1!

Double-Precision (Double) A#, 1/3#, 2#

Literals (Constants)

The following are valid literal types:

Type Boolean: Either or True False

1.

2.

3.

Type Invalid: onlyInvalid

Type String: A string in quotes (e.g.)"This is a string"

Type Integer: An integer in hex (e.g.) or decimal (e.g.) formatHFF 255

Type Float: A number with a decimal (e.g.), in scientific notation (e.g.), or with a Float type designator (e.g.)2.01 1.23456E+30 2!

Type Double: A number in scientific notation containing a double-precision exponent symbol (e.g.) or with a Double 1.23456789D-12
type declaration (e.g.)2.3#

Type Function: Similar to variable formatting (e.g.)MyFunction

Type Integer: LINE_NUM – The current source line number

Array Literals

The Array Operator can be used to declare an array. It can contain literals (constants) or expressions.[]

x = 5
Myarray = []
Myarray = [1, 2, 3]
Myarray = [x+5, true, 1<>2, ["a","b"]]

Associative Array Literals

The { } Associative Array Operator can be used to define an associative array. It can contain literals (constants) or expressions.

aa = { }
aa = {key1:"value", key2: 55, key3: 5+3 }

Arrays and associative arrays can also be defined with the following format:

aa = {
 Myfunc1: aFunction
 Myval1 : "the value"
}

Invalid Object Return

Many methods (i.e. functions) that return objects can also return Invalid (for example, in cases where there is no object to return). In these cases,
the variable accepting the result must be dynamically typed since it may be assigned either type.

The following code will return a type mismatch: a$ is a string that has a string type declaration, and thus it cannot contain Invalid.

l = []
a$ = l.pop()

Numbers

Dynamic Typing

The following rules determine how integers, doubles, and floats are dynamically typed:

If a constant contains 10 or more digits, or if is used in the exponent, the number is Double. Adding a type declaration also forces a D #
constant to be a Double.
If the number is not double precision and it contains a decimal point, the number is a Float. Expressing a number in scientific notation
using the exponent also forces a constant to be a Float.E

3. If neither of the above conditions is true for a constant, the number is an Integer.

Type Conversion

When operations are performed on one or two numbers, the result must be typed as an Integer, Float, or Double. When an addition (+),
subtraction (-), or multiplication (*) operation is performed, the result will have the same degree of precision as the most precise operand: For
example, multiplying an Integer by a Double will return a number that is a Double.

Only when both operands are Integers will the result be an Integer number. If the result of two Integer operands is outside the 32-bit range, the
operation and return will be carried out with Doubles.

Division (/) operates using the same rules as above, except that it can never be carried out at the Integer level: When both operators are Integers,
the operation and return will be carried out with Floats.

Comparison operations (e.g. <, >, =) will convert the numbers to the same type before they are compared. The less precise type will always be
converted to the more precise type.

Type Conversion and Accuracy

When a Float or Double number is converted to the Integer type, it is : The largest integer that is not greater than the number is rounded down
used. This also happens when the INT function is called on a number.

When a Double number is converted to the Float type, it is : The least significant digit is rounded up if the fractional part is >=5 4/5 rounded
(otherwise, it is left unchanged).

When a Float number is converted to the Double type, only the seven most significant digits will be accurate.

Operators

ON THIS PAGE

Logical and Bitwise Operators
Dot Operator

Associative Arrays
Array and Function-Call Operators

Array Dimensions
Equals Operator

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

Operations in the innermost level of parentheses are performed first. Evaluation then proceeds according to the precedence in the following table.
Operations on the same precedence are left-associative, except for exponentiation, which is right-associative.

Description Symbol(s)

Function Calls or Parentheses ()

Array Operators . , []

Exponentiation ^

Negation –, +

Multiplication, Division, Modulus *, /, MOD

Addition, Subtraction +, -

Comparison <, >, = , <>, <=, >=

Logical Negation NOT

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Logical Conjunction AND

Logical OR OR

String Operators: The following operators work with strings: <, >, =, <>, <=, >=, +

Function References: The and operators work on variables that contain function references and function literals.= <>

Logical and Bitwise Operators

The , , and operators are used for logical (Boolean) comparisons if the arguments for these operators are Boolean:AND OR NOT

a = 20
b = 20
c = 20
if a = c and not(b > 40) then print "success"

On the other hand, if the arguments for these operators are numeric, they will perform bitwise operations:

x = 1 and 2 ' x is zero
y = true and false ' y is false

When the or operator is used for a logical operation, only the necessary amount of the expression is executed. For example, the first AND OR
statement below will print "True", while the second statement will cause a runtime error (because "invalid" is not a valid operand for):OR

print true or invalid
print false or invalid

Dot Operator

The "." Dot Operator can be used on any BrightScript object. It also has special meaning when used on an object, as well as roAssociativeArray r
objects. When used on a BrightScript object, it refers to an interface or method associated with that object. In the and oXMLElement roXMLList

following example, refers to the interface and refers to a method that is part of that interface:IfInt SetInt()

i = CreateObject("roInt")
i.ifInt.SetInt(5)
i.SetInt(5)

Every object method is part of an interface. However, specifying the interface with the "." Dot Operator is optional. If the interface is omitted, as in
the third line of the above example, each interface that is part of the object will be searched for the specified member. If there is a naming conflict
(i.e. a method with the same name appears in two interfaces), then the interface should be specified.

Associative Arrays

When the "." Dot Operator is used on an Associative Array, it is the same as calling the or methods, which are Lookup() AddReplace()
member functions of the object: roAssociativeArray

aa = {}
aa.newkey = "the value"
print aa.newkey

Note that the parameters of the "." Dot Operator are set at compile time; unlike the and methods, they are not Lookup() AddReplace()

dynamic.

The "." Dot Operator is always case insensitive: For example, the statement will create the entry "newkey" in the associative aa.NewKey=55
array. To generate case-sensitive keys, instantiate an object and use the method.roAssociativeArray SetModeCaseSensitive()

Array and Function-Call Operators

The [] operator is used to access an array (i.e. any BrightScript object that has an interface, such as and objects). It can ifArray roArray roList
also be used to access an associative array. The [] operator takes expressions that are evaluated at runtime, while the "." Dot Operator takes
identifiers at compile time.

The () operator can be used to call a function. When used on a function literal (or variable containing a function reference), that function will be
called.

The following code snippet demonstrates the use of both array and function-call operators.

aa = CreateObject("roAssociativeArray")
aa["newkey"] = "the value"
print aa["newkey"]

array = CreateObject("roArray", 10, true)
array[2] = "two"
print array[2]

fivevar = five
print fivevar()

array[1] = fivevar
print array[1]() ' print 5

function five() As Integer
 return 5
end function

Array Dimensions

Arrays in BrightScript are one dimensional. Multi-dimensional arrays are implemented as arrays of arrays. The [] operator will automatically map
multi-dimensionality. For example, the following two fetching expressions are the same:

dim array[5,5,5]
item = array[1][2][3]
item = array[1,2,3]

Equals Operator

The = operator is used for both assignment and comparison:

a = 5
If a = 5 then print "a is 5"

If a multi-dimensional array grows beyond its hint size, the new entries are not automatically set to .roArray

Unlike the C language, BrightScript does not support use of the = assignment operator inside an expression. This is meant to eliminate a
common class of bugs caused by confusion between assignment and comparison.

When assignment occurs, intrinsic types are copied, while BrightScript objects are reference counted.

Objects and Interfaces

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

ON THIS PAGE

BrightScript Objects
Wrapper Objects
Interfaces
Statement and Interface Integration

PRINT
WAIT
Expression Parsing
Array Operator
Member Access Operator

BrightScript Objects

Though BrightScript operates independently of its object architecture and library, they are both required for programming BrightScript
applications. The API of a BrightSign platform is exposed to BrightScript as a library objects: Platforms must register a new BrightScript object to
expose some part of its API.

BrightScript objects are written in C (or a compatible language such as C++), and are robust against version changes: Scripts are generally
backwards compatible with objects that have undergone revisions.

BrightScript objects keep a reference count; they delete themselves when the reference count reaches zero.

Wrapper Objects

All intrinsic BrightScript types (Boolean, Integer, Float, Double, String, and Invalid) have object equivalents. If one of these intrinsic types is
passed to a function that expects an object, the appropriate wrapper object will be created, assigned the correct value, and passed to the function
(this is sometimes referred to as "autoboxing"): This allows, for example, objects to store values (e.g. integers and strings) as well as roArray
objects.

Any expression that expects one of the above types will work with the corresponding wrapper object as well: , , , , roBoolean roInt roFloat roDouble r
.oString

The following examples illustrate how wrapper objects work:

Print 5.tostr()+"th"
Print "5".toint()+5

-5.tostr() 'This will cause an error. Instead, use the following:
(-5).tostr()

if type(5.tostr())<> "String" then stop
if (-5).tostr()<>"-5" then stop
if (1+2).tostr()<>"3" then stop
i=-55
if i.tostr()<>"-55" then stop
if 100%.tostr()<>"100" then stop
if (-100%).tostr()<>"-100" then stop
y%=10

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

if y%.tostr()<>"10" then stop

if "5".toint()<>5 or type("5".toint())<>"Integer" then stop
if "5".tofloat()<>5.0 or type("5".tofloat())<>"Float" then stop
fs="-1.1"
if fs.tofloat()<>-1.1 or fs.toint()<>-1 then stop

if "01234567".left(3)<>"012" then stop
if "01234567".right(4)<>"4567" then stop
if "01234567".mid(3)<>"34567" then stop
if "01234567".mid(3,1)<>"3" then stop
if "01234567".instr("56")<>5 then stop
if "01234567".instr(6,"56")<>-1 then stop
if "01234567".instr(0,"0")<>0 then stop

Interfaces

Interfaces in BrightScript operate similarly to Java or Microsoft COM: An interface is a known set of member functions that implement a set of
logic. In some ways, an interface is similar to a virtual base class in C++; any script or program that is compatible with C can use an object
interface without regards to the type of object it belongs to: For example, the object, which controls the standard serial interface, roSerialPort
implements three interfaces: , , and . Since the print statement sends its output to any object that has ifSerialControl ifStreamReceive ifStreamSend
an interface, it works with the object, as well as any other object with the interface.ifStreamSend roSerialPort ifStreamSend

Statement and Interface Integration

Some BrightScript statements have integrated functionality with interfaces. This section describes how to use statements with interfaces.

PRINT

Using the statement in the following format will print into an object that has an interface, including the and PRINT ifStreamSend roTextField roSeri
objects:alPort

port = CreateObject("roSerialPort",0,115200)
print port, "string"

If the expression being printed evaluates to an object with an interface, the statement will print every item that can be enumerated.ifEnum PRINT

In addition to printing the values of intrinsic types, the statement can also be used to print any object that exposes one of the following PRINT
interfaces: , , .ifString ifInt ifFloat

WAIT

The statement can work in conjunction with any object that has an interface.WAIT ifMessagePort

Expression Parsing

Any expression that expects a certain type of variable—including Integer, Float, Double, Boolean, or String—can accept an object with an
interface equivalent of that type: , , , , .ifInt ifFloat ifDouble ifBoolean ifString

Array Operator

The [] array operator works with any object that has an or interface, including arrays, associative arrays, and lists.ifArray ifAssociativeArray

Member Access Operator

The member access operator (i.e.) works with any object that has an interface. It also works with any object Dot Operator ifAssociativeArray
when used to call a member function (i.e. method). It also has special meaning when used on an or object.roXMLElement roXMLList

XML Support

Firmware Version 7.0

https://docs.brightsign.biz/display/DOC/Operators#Operators-Dot_Operator

Version 7.0
Version 6.2
Version 6.1
Previous Versions

ON THIS PAGE

Dot Operator
Attribute Operator
Examples

Flikr code clip

BrightScript provides XML support with two BrightScript objects and a set of dedicated language features:

roXMLElement: This object provides support for parsing, generating, and containing XML.

roXMLList: This object is used to contain a list of instances.roXMLElement

Dot Operator

The "." has the following features when used with XML objects:Dot Operator

When used with an instance, the "." Dot Operator returns an instance of the child tags that match the dot roXMLElement roXMLList
operand. If no tags match the operand, an empty list is returned.
When applied to an instance, the "." Dot Operator aggregates the results of performing the above operation on each roXMLList roXMLEle

in the list.ment
When applied to XML, which is technically case sensitive, the "." Dot Operator is still case insensitive. If you wish to perform a case-
sensitive XML operation, use the member functions of the / objects.roXMLElement roXMLList

Attribute Operator

The “@” Attribute Operator can be used with an instance to return a named attribute. Though XML is case sensitive, the Attribute roXMLElement
Operator is always case insensitive. If the Attribute Operator is used with an instance, it will only return a value if that list contains roXMLList
exactly one element.

Examples

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
 <photos page="1" pages="5" perpage="100" total="500">
 <photo id="3131875696" owner="21963906@N06" secret="f248c84625" server="3125"
 farm="4" title="VNY 16R" ispublic="1" isfriend="0" isfamily="0" />
 <photo id="3131137552" owner="8979045@N07" secret="b22cfde7c4" server="3078"
 farm="4" title="hoot" ispublic="1" isfriend="0" isfamily="0" />
 <photo id="3131040291" owner="27651538@N06" secret="ae25ff3942" server="3286"
 farm="4" title="172 • 365 :: Someone once told me..." ispublic="1" isfriend="0"
 />
 </photos>
</rsp>

Given the XML in the above file, then the following code will return an instance with three entries:example.xml roXMLList

rsp=CreateObject("roXMLElement")
rsp.Parse(ReadAsciiFile("example.xml"))

? rsp.photos.photo

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/display/DOC/Operators#Operators-Dot_Operator

The following will return an reference to the first photo (id=" "):roXMLElement 3131875696

? rsp.photos.photo[0]

The following will return an reference containing the <photos> tag:roXMLList

? rsp.photos

The following will return the string “100”:

rsp.photos@perpage

You can use the method to return an element’s text: For example, if the variable contains the element roXMLElement.GetText() <booklist> <bo
, then the following code will print the string “The Dawn of Man”.ok lang=eng>The Dawn of Man</book>

Print booklist.book.gettext()

Alternatively, using the Attribute Operator will print the string “eng”.

print booklist.book@lang

Flikr code clip

REM
REM Interestingness
REM pass an (optional) page of value 1 - 5 to get 100 photos
REM starting at 0/100/200/300/400
REM
REM returns a list of "Interestingness" photos with 100 entries
REM

Function GetInterestingnessPhotoList(http as Object, page=1 As Integer) As Object

 print "page=";page

 http.SetUrl("http://api.flickr.com/services/rest/?method=flickr.interestingness.
getList&api_key=YOURKEYGOESHERE&page="+mid(stri(page),2))

 xml=http.GetToString()

 rsp=CreateObject("roXMLElement")
 if not rsp.Parse(xml) then stop

 return helperPhotoListFromXML(http, rsp.photos.photo) 'rsp.GetBody().Peek().GetBody())

End Function

Function helperPhotoListFromXML(http As Object, xmllist As Object, owner=invalid As dynamic)
As Object

 photolist=CreateObject("roList")
 for each photo in xmllist
 photolist.Push(newPhotoFromXML(http, photo, owner))
 end for
 return photolist

End Function

REM
REM newPhotoFromXML
REM
REM Takes an roXMLElement Object that is an <photo> ... </photo>
REM Returns an brs object of type Photo
REM photo.GetTitle()
REM photo.GetID()
REM photo.GetURL()
REM photo.GetOwner()
REM

Function newPhotoFromXML(http As Object, xml As Object, owner As dynamic) As Object
 photo = CreateObject("roAssociativeArray")
 photo.http=http
 photo.xml=xml
 photo.owner=owner
 photo.GetTitle=function():return m.xml@title:end function
 photo.GetID=function():return m.xml@id:end function
 photo.GetOwner=pGetOwner
 photo.GetURL=pGetURL
 return photo
End Function

Function pGetOwner() As String
 if m.owner<>invalid return m.owner
 return m.xml@owner
End Function

Function pGetURL() As String
 a=m.xml.GetAttributes()
 url="http://farm"+a.farm+".static.flickr.com/"+a.server+"/"+a.id+"_"+a.secret+".jpg"
 return url

End Function

Garbage Collection

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

BrightScript automatically frees strings when they are no longer used, and it will free objects when their reference count goes to zero. This is
carried out at the time the object or string is no longer used; there is no background garbage collection task. The result is a predictable garbage-
collection process, with no unexpected stalls in execution.

Objects may enter a state of circular reference counting: Objects that reference each other will never reach a reference count of zero and will
need to be freed manually using the method. This method is useful when destroying old presentation data structures RunGarbageCollector()
and creating a new presentation.
Events

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

Events in BrightScript center around an event loop and the object. Most BrightScript objects can post to a message port in the roMessagePort
form of an event object: For example, the object posts events of the type when configured intervals are reached.roTimer roTimerEvent

The following script sets the destination message port using the method, waits for an event in the form of an object, SetPort() roGpioButton
and then processes the event.

print "BrightSign Button-LED Test Running"
p = CreateObject("roMessagePort")
gpio = CreateObject("roGpioControlPort")
gpio.SetPort(p)

while true
 msg=wait(0, p)
 if type(msg)="roGpioButton" then
 butn = msg.GetInt()
 if butn <=5 then
 gpio.SetOutputState(butn+17,1)
 print "Button Pressed: ";butn
 sleep(500)
 gpio.SetOutputState(butn+17,0)
 end if
 end if

 REM ignore buttons pressed while flashing led above
 while p.GetMessage()<>invalid
 end while
end while

Note that lines 6-7 can be replaced using the following (and substituting with):end while end for

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

For each msg in p

Threading Model

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

BrightScript runs in a single thread. In general, BrightScript object calls are synchronous if they return quickly, and asynchronous if they take a
substantial amount of time to complete. For example, methods belonging to the object are all synchronous, while the method roArray Play()
that is part of the object will return immediately (it is asynchronous). As a video plays, the object will post messages roVideoPlayer roVideoPlayer
to the message port, indicating such events as “media playback finished” or “frame x reached”.

The object implementer decides whether a BrightScript object should launch a background thread to perform a synchronous operation.
Sometimes, an object will feature synchronous and asynchronous versions of the same method.

This threading model ensures that the script writer does not have to deal with mutexes and other synchronization objects. The script is always
single threaded, and the message port is polled or waited on to receive events into the thread. On the other hand, those implementing
BrightScript objects have to consider threading issues: For example, the and objects are thread-safe internally, allowing roList roMessagePort
them to be used by multiple threads.
Scope

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

BrightScript uses the following scoping rules:

Global variables are not supported; however, there is a single hard-coded global variable (“global”) that is an interface to the global
, which contains all global library functions.BrightScript object

Functions declared with the statement are global in scope; however, if the function is anonymous, it will still be local in scope.Function

Local variables exist within the function scope. If a function calls another function, that new function has its own scope.
Labels exist within the function scope.
Block statements such as and do not create a separate scope.For / End For While / End While

Intrinsic Objects

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

In general, this manual uses the term “object” to refer to “BrightScript components”, which are C or C++ components with interfaces and member
functions that BrightScript uses directly. With the exception of some core objects (, , , , etc.), roArray roAssociativeArray roInt roMessagePort
BrightScript objects are platform specific.

You can create intrinsic objects in BrightScript, but these objects are not BrightScript components. There is currently no way to create a
BrightScript component in BrightScript or to create intrinsic objects that have interfaces (intrinsic objects can only contain member functions,
properties, and other objects).

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

A BrightScript object is simply an : When a member function is called from an associative array, a “this” pointer is set to “m”, roAssociativeArray
and “m” is accessible inside the Function code to access object keys. A “constructor” in BrightScript is simply a normal function at a global scope
that creates an instance and fills in its member functions and properties roAssociativeArray

See the “snake” game in the appendix for examples of creating intrinsic objects.
Program Statements

ON THIS PAGE

Statement Syntax
LIBRARY
DIM
Assignment ("=")
END
STOP
GOTO
RETURN
PRINT

[@location]
TAB (expression)
POS(x)

FOR / END FOR
FOR EACH IN / END FOR
WHILE / EXIT WHILE
IF / THEN / ELSE
Block IF / ELSEIF / THEN / ENDIF
Function() As Type / End Function

"M" Identifier
Anonymous Functions

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

BrightScript supports the following statement types (note that BrightScript is not case sensitive). The syntax of each statement is documented in
more detail later in this chapter.

Library

Dim

= (assignment)

End

Stop

Goto

Rem (or ')

print

For / To / End For / Step / Exit For

For Each / In / End For / Exit For

While / End While / Exit While

Function / End Function / As / Return

Example
Function Main() As Void

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

 dim cavemen[10]

 cavemen.push("fred")
 cavemen.push("barney")
 cavemen.push("wilma")
 cavemen.push("betty")

 for each caveman in cavemen
 print caveman
 end for

End Function

Statement Syntax

Each line may contain a single statement. However, a colon (:) may be used to separate multiple statements on a single line.

Example
myname = "fred"
if myname="fred" then yourname = "barney":print yourname

LIBRARY

LIBRARY Filename.brs

The LIBRARY statement allows you to include your own BrightScript libraries (files), which can then be utilized by your script. The LIBRARY .brs
statement(s) must occur at the beginning of a script, before any other statements, functions, operators, etc.

The system locates a library by searching the directory containing the current script, as well as the directory. Note that the SYS:/script-lib/ R
 function does not currently change the path of a LIBRARY statement to that of the called script (i.e. the system will continue searching the un()

directory of the caller script). On the other hand, running a script directly from the BrightSign shell does modify the library search path to that of
the called script.

The first statement will include a library in the same folder as the script, while the second will include a library in a sub-folder.

LIBRARY "myBSL1.brs"
LIBRARY "new_lib/myBSL2.brs"

The following statement will include the library, which has some useful BrightScript features, from the directory.bslCore.brs SYS:/script-lib/

LIBRARY "v30/bslCore.brs"

DIM

DIM Name (dim1, dim2, …, dimK)

The (“dimension”) statement provides a shortcut for creating objects. It sets the variable Name to type “roArray”. It can create arrays DIM roArray
of arrays as needed for multi-dimensionality. The dimension passed to is the index of the maximum entry to be allocated (i.e. the array initial DIM
size = dimension+1), though the array will be resized larger automatically if needed.

The following two lines create identical arrays.

Dim array[5]
array = CreateObject("roArray", 6, true)

The following script demonstrates useful operations on a DIM array.

Dim c[5, 4, 6]

For x = 1 To 5
 For y = 1 To 4
 For z = 1 To 6
 c[x, y, z] = k
 k = k + 1
 End for
 End for
End for

k=0
For x = 1 To 5
 For y = 1 To 4
 For z = 1 To 6
 If c[x, y, z] <> k Then print"error" : Stop
 k = k + 1
 End for
 End for
End for

Assignment ("=")

variable = expression

The assignment statement (“=”) assigns a variable to a new value.

In each of the following lines, the variable on the left side of the equals operator is assigned the value of the constant or expression on the right
side of the equals operator.

a$="a rose is a rose"
b1=1.23
x=2.23
x=x-b1

END

The statement terminates script execution normally.END

STOP

The statement interrupts script execution, returns a “STOP” error, and invokes the debugger. Use the command at the debugger STOP cont
prompt to continue execution of the script or the command to execute a single step in the script.step

GOTO

GOTO label

The statement transfers program control to the line number specified by . The statement results in a branching GOTO label GOTO label
operation. A is an identifier terminated with a colon on a line that contains no other statements or expressions. label

Example

Note

The expression is equivalent to x[a][b].x[a,b]

mylabel:
print "Hello World"
goto mylabel

RETURN

RETURN expression

The statement returns from a function back to its caller. If the function is not type Void, can also return a value to the caller.RETURN RETURN

PRINT

PRINT [#output_object], [@location], item list

The PRINT statement prints an item or list of items in the console. The item(s) may be strings, integers, floats, variables, or expressions. An
object with an , , or interface may also be printed. If the is specified, this statement will print to an object with ifInt ifFloat ifString output_object
an interface.ifStreamSend

If the statement is printing a list of items, the items must be separated with semicolons or commas. If semicolons are used, spaces are not
inserted between printed items; if commas are used, the cursor will automatically advance to the next print zone before printing the next item.

Positive numbers and zero are printed with a leading space (without a plus sign). Spaces are not inserted before or after strings.

Example
x = 5 : print 25; " is equal to"; x ^2
' prints "25 is equal to 25"

Example
a$ = "string"
print a$;a$,a$;" ";a$
'prints "stringstring string string"

Each print zone in the following example is 16 characters wide. The cursor moves to the next print zone each time a comma is encountered.

> print "zone 1","zone 2","zone 3","zone 4"
'prints "zone 1 zone 2 zone 3 zone 4"

Example
print "print statement #1 ";
print "print statement #2"
'prints "print statement #1 print statement #2"

In some cases, semicolons can be dropped. For example, the following statement is legal:

Print "this is a five "5"!!"

A trailing semicolon overrides the cursor-return so that the next statement begins where the last left off. If no trailing punctuation is used PRINT
with a statement, the cursor drops to the beginning of the next line.PRINT

[@location]

If the console you are printing to has the interface, you can use the character to specify where printing will begin.ifTextField @

Example
print #m.text_field,@width*(height/2-1)+(width-len(msg$))/2,msg$;

Whenever you use on the bottom line of the display, an automatic line-feed causes all displayed lines to move up one line. To prevent PRINT @
this from happening, use a trailing semicolon at the end of the statement.

TAB (expression)

This statement moves the cursor to the specified position on the current line (modulo the width of the console if the TAB position is greater than
the console width).

Example
print tab(5)"tabbed 5";tab(25)"tabbed 25"

Note the following about the statement:TAB

The statement may be used several times in a list.TAB PRINT

No punctuation is required after a statement.TAB

Numerical expressions may be used to specify a position.TAB

The statement cannot be used to move the cursor to the left.TAB

If the cursor is beyond the specified position, the statement is ignored.TAB

POS(x)

This statement returns an integer that indicates the current cursor position from 0 to the maximum width of the window. This statement requires a
dummy argument in the form of any numeric expression.

print tab(40) pos(0) 'prints 40 at position 40

print "these" tab(pos(0)+5)"words" tab(pos(0)+5)"are";
print tab(pos(0)+5)"evenly" tab(pos(0)+5)"spaced"

FOR / END FOR

FOR counter_variable = initial_value TO final_value STEP increment / END FOR

The statement creates an iterative loop that allows a sequence of program statements to be executed a specified number of times.FOR

The , , and can be any expression. The first time the statement is executed, these three initial_value final_value increment FOR
variables are evaluated and their values are saved; changing the variables during the loop will have no affect on the operation of the loop.
However, the must not be changed, or the loop will not operate normally. The first time the statement is executed, the counter_variable FOR
counter is set to both the value and type of the .initial_value

At the beginning of each loop, the value of the is compared with the . If the value of the counter_variable final_value counter_variable
 is greater than the , the loop will complete and execution will continue with the statement following the statement. If, on final_value END FOR
the other hand, the counter has not yet exceeded the , control passes to the first statement after the statement. If increment is final_value FOR
a negative number, the loop will complete when the value of the is less than the .counter_variable final_value

When program flow reaches the statement, the counter is incremented by the specified increment amount (or decremented if increment END FOR
is a negative value). If the language is not included in the statement, the increment defaults to 1.STEP [increment] FOR

Use to exit a block prematurely.EXIT FOR FOR

The following script decrements at the beginning of each loop until it is less than 1.i

for i=10 to 1 step -1
 print i
end for

FOR EACH IN / END FOR

FOR EACH item IN object / END FOR

The statement can iterate through a set of items in any object that has an interface (i.e. an enumerator). The block is FOR EACH ifEnum FOR
terminated with the statement. Objects that are ordered intrinsically (such as) are enumerated in order, while objects that have no END FOR roList
intrinsic order (such as) are enumerated in apparent random order. It is possible to delete entries as they are enumerated.roAssociativeArray

Use to exit a block prematurely.EXIT FOR FOR

The following objects can be enumerated: , , , .roList roArray roAssociativeArray roMessagePort

The following script iterates over an associative array in random order, prints each key/value pair, then deletes it.

aa={joe: 10, fred: 11, sue:9}
For each n in aa
 Print n;aa[n]
 aa.delete[n]
end for

WHILE / EXIT WHILE

WHILE expression / EXIT WHILE

A loop executes until the specified expression is false. Use the statement to exit a block prematurely.WHILE EXIT WHILE WHILE

k=0
while k<>0
 k=1
 Print "loop once"
end while

while true
 Print "loop once"
 Exit while
End while

IF / THEN / ELSE

IF expression THEN statements [ELSE statements]

The statement instructs the interpreter to test the following expression. If the expression is True, control will proceed to the statements IF
immediately following the expression. If the expression is False, control will jump to either the matching statement (if there is one) or to the ELSE
next program line after the block.

Example
if x>127 then print "out of range" : end

This is the single-line form of the IF THEN ELSE statement; see the next section for more details about the block form of the IF THEN
ELSE statement.

THEN is optional in the above and similar statements. However, is sometimes required to eliminate ambiguity, as in the following exampleTHEN

if y=m then m=o 'won't work without THEN

Block IF / ELSEIF / THEN / ENDIF

The block (i.e. multi-line) form of IF / THEN / ELSE has the following syntax:

If BooleanExpression [Then]
 [Block]
 [ElseIfStatement+]
 [ElseStatement]
End If

ElseIfStatement ::=
 ElseIf BooleanExpression [Then]
 [Block]

ElseStatement ::=
 Else
 [Block]

Example
vp_msg_loop:
 msg=wait(tiut, p)
 if type(msg)="rovideoevent" then
 if debug then print "video event";msg.getint()
 if lm=0 and msg.getint() = meden then
 if debug then print "videofinished"
 retcode=5
 return
 endif
 else if type(msg)="rogpiobutton" then
 if debug then print "button press";msg
 if esc0 and msg=b0 then retcode=1:return
 if esc1 and msg=b1 then retcode=2:return
 if esc2 and msg=b2 then retcode=3:return
 if esc3 and msg=b3 then retcode=4:return
 else if type(msg)=" Invalid" then
 if debug then print "timeout"
 retcode=6
 return
 endif

 goto vp_msg_loop

Function() As Type / End Function

Function name(parameter As Type, …) As Type

A function is declared using the statement. The parentheses may contain one or more optional parameters; parameters can also Function()
have default values and expressions.

Each function has its own scope.

The type of each parameter may be declared. The return type of the function may also be declared. If a parameter type or return type is not
declared, it is Dynamic by default. Intrinsic types are passed by value (and a copy is made), while objects are passed by reference. The stateSub
ment can be used instead of as a shortcut for creating a function with return type Void.Function

A parameter can be one of the following types:

Integer
Float
Double
String
Object
Dynamic

The function return can be one of the following types:

Void
Integer
Float
Double
String
Object
Dynamic

"M" Identifier

If a function is called from an associative array, then the local variable is set to the associative array in which the function is stored. If the m

function is not called from an associative array, then its variable is set to an associative array that is global to the module and persists across m

calls.

The identifier should only be used for the purpose stated above: We do not recommend using as a general-purpose identifier.m m

Example
sub main()
 obj={
 add: add
 a: 5
 b: 10
 }

 obj.add()
 print obj.result
end sub

function add() As void
 m.result=m.a+m.b
end function

Anonymous Functions

A function without a name declaration is considered anonymous.

The following is a simple anonymous function declaration:

myfunc=function (a, b)
 Return a+b
end function

print myfunc(1,2)

Anonymous functions can also be used with associative-array literals:

q = {

starring : function(o, e)
str = e.GetBody()
print "Starring: " + str
toks = box(str).tokenize(",")
for each act in toks
actx = box(act).trim()
if actx <> "" then
print "Actor: [" + actx + "]"
 o.Actors.Push(actx)
endif
end for
return 0
end function
}

q.starring(myobj, myxml)

Built-In Functions

ON THIS PAGE

Type()
GetGlobalAA()
Rnd()
Box()
Run()
Eval()
GetLastRunCompileError()
GetLastRunRuntimeError()

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

BrightScript features a set of built-in, module-scope, intrinsic functions. A number of file I/O, string, mathematics, and system functions are also
available via the object.roGlobal

Type()

Type(a As Variable) As String

This function returns the type of the passed variable and/or object.

GetGlobalAA()

GetGlobalAA() As Object

This function fetches the global associative array for the current script.

Rnd()

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Rnd(range As Integer) As Integer
Rnd(0) As Float

If passed a positive, non-zero integer, this function returns a pseudo-random integer between 1 and the argument value. The range includes the
argument value: For example, calling will return a pseudo-random integer greater than 0 and less than 56.Rnd(55)

If the argument is 0, this function returns a pseudo-random Float value between 0 and 1.

Box()

Box(type As Dynamic) As Object

This function returns an object version of the specified intrinsic type. Objects will be passed through.

Example
b = box("string")
b = box(b) ' b does not change

Run()

Run(file_name As String, [optional_arg As Dynamic, …]) As Dynamic
Run(file_names As roArray, [optional_arg As Dynamic, …]) As Dynamic

This function runs one or more scripts from the current script. You may append optional arguments, which will be passed to the function Main()
of the script(s). The called script may also return arguments to the caller script.

If a string file name is passed, the function will compile and run the corresponding file. If an array of files is passed, the function will compile each
file, link them together, and run them.

Example
Sub Main()
 Run("test.brs")
 BreakIfRunError(LINE_NUM)
 Print Run("test2.brs", "arg 1", "arg 2")
 if Run(["file1.brs","file2.brs"])<>4 then stop
 BreakIfRunError(LINE_NUM)
 stop
End Sub

Sub BreakIfRunError(ln)
 el=GetLastRunCompileError()
 if el=invalid then
 el=GetLastRunRuntimeError()
 if el=&hFC or el=&hE2 then return
 'FC==ERR_NORMAL_END, E2=ERR_VALUE_RETURN
 print "Runtime Error (line ";ln;"): ";el
 stop
 else
 print "compile error (line ";ln;")"
 for each e in el
 for each i in e
 print i;": ";e[i]
 end for
 end for

 stop

Note

The functions utilize a pseudo-random seed number that is generated internally and not accessible to the user.Rnd()

 end if
End Sub

Eval()

Eval(code_snippet As String) As Dynamic

This function runs the passed code snippet in the context of the current function. The function compiles the snippet, then executes the byte-code.
If the code compiles and runs successfully, it will return zero. If the code compiles successfully, but encounters a runtime error, it will return an
integer indicating the error code (using the same codes as the function). If compilation fails, it will return an GetLastRunRuntimeError() roList
object; the structure is identical to that of the function.roList GetLastRunCompileError()

The function can be useful in two cases:Eval()

When you need to dynamically generate code at runtime.
When you need to execute a statement that could result in a runtime error, but you don’t want code execution to stop.

Example
PRINT Eval("1/0") 'Returns a divide by zero error.

GetLastRunCompileError()

GetLastRunCompileError() As roList

This function returns an object containing compile errors (or Invalid if no errors occurred). Each entry is an object roList roList roAssociativeArray
containing the following keys:

ERRSTR: The compile error type (as String)

FILESPEC: The file URI of the script containing the error (as String)

ERRNO: The error number (as Integer)

LINENO: The line number where the error occurs (as Integer)

The following are possible values:ERRNO

Error Code Description Expanded Description

&hBF 191 ERR_NW ENDWHILE statement occurs without
statement.

&hBE 190 ERR_MISSING_ENDWHILE WHILE statement occurs without END
 statement.WHILE

&hBC 188 ERR_MISSING_ENDIF End of script reached without finding
an statement.ENDIF

&hBB 187 ERR_NOLN No line number found.

&hBA 186 ERR_LNSEQ Line number sequence error.

&hB9 185 ERR_LOADFILE Error loading file.

&hB8 184 ERR_NOMATCH MATCH statement does not match.

&hB7 183 ERR_UNEXPECTED_EOF Unexpected end of string
encountered during string
compilation.

&hB6 182 ERR_FOR_NEXT_MISMATCH Variable on does not match NEXT FOR
.

&hB5 181 ERR_NO_BLOCK_END

&hB4 180 ERR_LABELTWICE Label defined more than once.

&hB3 179 ERR_UNTERMED_STRING Literal string does not have end
quote.

&hB2 178 ERR_FUN_NOT_EXPECTED

&hB1 177 ERR_TOO_MANY_CONST

&hB0 176 ERR_TOO_MANY_VAR

&hAF 175 ERR_EXIT_WHILE_NOT_IN_WHILE

&hAE 174 ERR_INTERNAL_LIMIT_EXCEDED

&hAD 173 ERR_SUB_DEFINED_TWICE

&hAC 172 ERR_NOMAIN

&hAB 171 ERR_FOREACH_INDEX_TM

&hAA 170 ERR_RET_CANNOT_HAVE_VALUE

&hA9 169 ERR_RET_MUST_HAVE_VALUE

&hA8 168 ERR_FUN_MUST_HAVE_RET_TYPE

&hA7 167 ERR_INVALID_TYPE

&hA6 166 ERR_NOLONGER Feature no longer supported.

&hA5 165 ERR_EXIT_FOR_NOT_IN_FOR

&hA4 164 ERR_MISSING_INITILIZER

&hA3 163 ERR_IF_TOO_LARGE

&hA2 162 ERR_RO_NOT_FOUND

&hA1 161 ERR_TOO_MANY_LABELS

&hA0 160 ERR_VAR_CANNOT_BE_SUBNAME

&h9F 159 ERR_INVALID_CONST_NAME

&h9E 158 ERR_CONST_FOLDING

GetLastRunRuntimeError()

GetLastRunRuntimeError() As Integer

This function returns the error code that resulted from the last function.Run()

These codes indicate a normal result:

Error Code Description Expanded Description

&hFF 255 ERR_OKAY

&hFC 252 ERR_NORMAL_END Execution ended normally, but with
termination (e.g. END, shell "exit",
window closed).

&hE2 226 ERR_VALUE_RETURN Return executed with value returned
on the stack.

&hE0 224 ERR_NO_VALUE_RETURN Return executed without value
returned on the stack.

The following codes indicate runtime errors:

Error Code Description Expanded Description

&hFE 254 ERR_INTERNAL Unexpected condition occurred.

&hFD 253 ERR_UNDEFINED_OPCD Opcode could not be handled.

&hFB 251 ERR_UNDEFINED_OP Expression operator could not be
handled.

&hFA 250 ERR_MISSING_PARN

&hF9 249 ERR_STACK_UNDER No value to pop off the stack.

&hF8 248 ERR_BREAK scriptBreak() function called.

&hF7 247 ERR_STOP STOP statement executed.

&hF6 246 ERR_RO0 bscNewComponent failed because
object class not found.

&hF5 245 ERR_R01

BrightScript member function call
does not have right number of
parameters.

&hF4 244 ERR_RO2 BrightScript member function not
found in object or interface.

&hF3 243 ERR_RO3 BrightScript interface not a member
of the object.

&hF2 242 ERR_TOO_MANY_PARAM Too many function parameters to
handle.

&hF1 241 ERR_WRONG_NUM_PARAM Number of function parameters
incorrect.

&hF0 240 ERR_RVIG Function returns a value, but is
ignored.

&hEF 239 ERR_NOTPRINTABLE Value not printable.

&hEE 238 ERR_NOTWAITABLE WAIT statement cannot be applied
to object because object does not
have an interface.roMessagePort

&hED 237 ERR_MUST_BE_STATIC Interface calls from rotINTERFACE
type must be static.

&hEC 236 ERR_RO4 "." Dot Operator used on object that
does not contain legal object or
interface reference.

&hEB 235 ERR_NOTYPEOP Operation attempted on two type-
less operands.

&hE9 233 ERR_USE_OF_UNINIT_VAR Uninitialized variable used illegally.

&hE8 232 ERR_TM2 Non-numeric index applied to array.

&hE7 231 ERR_ARRAYNOTDIMMED

&hE6 230 ERR_USE_OF_UNINIT_BRSUBREF Reference to uninitialized SUB.

&hE5 229 ERR_MUST_HAVE_RETURN

&hE4 228 ERR_INVALID_LVALUE Left side of the expression is invalid.

&hE3 227 ERR_INVALID_NUM_ARRAY_IDX Number of array indexes is invalid.

&hE1 225 ERR_UNICODE_NOT_SUPPORTED

&hE0 224 ERR_NOTFUNOPABLE

&hDF 223 ERR_STACK_OVERFLOW

&h20 32 ERR_CN Continue (or) not allowed.cont c

&h1C 28 ERR_STRINGTOLONG

&h1A 26 ERR_OS String space has run out.

&h18 24 ERR_TM A Type Mismatch (string /number
operation mismatch) has occurred.

&h14 20 ERR_DIV_ZERO

&h12 18 ERR_DD Attempted to re-dimension array.

&h10 16 ERR_BS Array subscript out of bounds.

&h0E 14 ERR_MISSING_LN

&h0C 12 ERR_OUTOFMEM

&h08 8 ERR_FC Invalid parameter passed to function
/array (e.g. a negative matrix dim or
square root).

&h06 6 ERR_OD Out of data (READ).

&h04 4 ERR_RG Return without Gosub.

&h02 2 ERR_SYNTAX

&h00 0 ERR_NF Next without .For

Core Library Extension

1.
2.
3.

4.

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

There are a number of built-in functions that are not part of the BrightScript Core Library. You can use the statement to include this LIBRARY
subset of functions:

LIBRARY "v30/bslCore.brs"

bslBrightScriptErrorCodes() As roAssociativeArray

Returns an associative array of name/value pairs corresponding to BrightScript error codes and their descriptions.

bslGeneralConstraints() As roAssociativeArray

Returns an associative array of name/value pairs corresponding to system constants.

bslUniversalControlEventCodes() As roAssociativeArray

Returns an associative array of name/value pairs corresponding to the remote key code constraints.

AsciiToHex(ascii As String) As String

Returns a hex-formatted version of the passed ASCII string.

HexToAscii(hex As String) As String

Returns an ASCII-formatted version of the passed hex string.

HexToInteger(hex As String) As Integer

Returns the integer value of the passed hex string.
BrightScript Debug Console

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

If, while a script is running, a runtime error occurs or a statement is encountered, the BrightSign application will enter the BrightScript debug STOP
console. The debug console can be accessed from a terminal program using a null-modem cable connected to the serial, GPIO, or VGA port
(depending on the player model). Networked players can also be accessed via .You can access the debug console at bootup by Telnet or SSH
following these steps:

Power off the device.
Hold the button and power on the device.SVC
Wait until the prompt appears in the terminal. You can now release the button.brightsign> SVC
Enter at the prompt. This will take you to the BrightScript debug console.script

Note

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/display/DOC/Program+Statements#ProgramStatements-library
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/display/DOC/Telnet+and+SSH

The console scope is set to the function that was running when a runtime error or statement occurred. While in the console, you can type in STOP
any BrightScript statement; it will then be compiled and executed in the current context.

In most cases, the debug console is the default device for the statement.PRINT

BrightScript Console Commands

The following console commands are currently available in the BrightScript debug console:

bt Print a backtrace of call-function context frames.

classes List all public classes.

cont or c Continue script execution.

counts List count of BrightScript Component instances.

da Show disassembly and bytecode for this function.

down or d Move one position down the function context chain.

exit Exit the debug shell.

gc Run the garbage collector and show collection statistics.

hash Print the internal hash-table histograms.

last Show the last line that executed.

method <class> List methods provided by specified class.

method <class>.<interface> List methods provided by the specified interface or class.

list List the current source of the current function.

ld Show line data (source records)

next Show the next line to execute.

bsc List all allocated BrightScript Component instances.

stats Show statistics.

step or s Step one program statement.

t Step one statement and show each executed opcode.

up or u Move one function up the context chain.

var Display local variables and their types/values.

print or p or ? Print variable value or expression.

BrightScript Versions

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

BrightScript Version Matrix

January 9, 2009

The above instructions apply to Series 3 players (e.g. XTx43, XDx33, HDx23, LS423). To access the debug console on earlier player
models, power on the device and wait at least 5 seconds after the power LED () lights up. Then, use a paperclip or pen to press pwr
and hold the button on the side of the player until the prompt appears in the terminal.SVC brightsign>

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

 HD20000 1.3 Branch HD2000
 2.0 Branch

Compact Main Line

SnapShot Date 1/7/2008 7/16/2008 1/9/2009

Defxxx, on, gosub, clear, random,
data, read, restore, err, errl, let,
clear, line numbers

X X

Intrinsic Arrays X X

Compiler X X

AA & dot Op & m reference X X

Sub/Functions X X

ifEnum & For Each X X

For/Next Does Not Always Execute
At Least Once

 X X

Exit For X X

Invalid Type. Errors that used to be
Int Zero are now Invalid. Added
roInvalid; Invalid Autoboxing

 X

Array's use roArray; Added ifArray X

Uninit Var Usage No Longer Allowed X

Sub can have "As" (like Function) X

roXML Element & XML Ops dot and
@

 X

Type() Change: Now matches
declaration names (eg. Integer not
roINT32)

 X

Added roBoolean X

Added dynamic Type; Type now
optional on Sub/Functions

 X

And/Or Don't Eval un-needed Terms X

Sub/Fun Default Parameter Values
(e.g.)Sub (x=5 As Integer)

 X

AA declaration Op { } X

Array Declaration Op [] X

Change Array Op from () to [] X

Anonymous Functions X

Added Circ. Ref. Garbage Collector X

Add Eval(), Run(), and Box() X

Reserved Words

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

AND ENDSUB LINE_NUM RND

CREATEOBJECT ENDWHILE M* STEP

DIM EXIT NEXT STOP

EACH EXITWHILE NOT SUB

EACH FALSE OBJFUN TAB

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ELSE FOR OR THEN

END FUNCTION POS TO

ENDFOR GOTO PRINT TRUE

ENDFUNCTION IF REM TYPE

ENDIF INVALID RETURN WHILE

* Although is not strictly a reserved word, it should not be used as an identifier outside of its . M intended purpose

Example Script

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

The following code uses GPIO buttons 1, 2, 3, 4 for controls. It will work on any BrightSign model that has a video output and a GPIO port.

REM
REM The game of Snake
REM demonstrates BrightScript programming concepts
REM June 22, 2008

REM
REM Every BrightScript program must have a single Main()
REM

Sub Main()

 game_board=newGameBoard()

 While true
 game_board.SetSnake(newSnake(game_board.StartX(), game_board.StartY()))
 game_board.Draw()
 game_board.EventLoop()
 if game_board.GameOver() then ExitWhile
 End While
End Sub

REM ***
REM ***
REM *************** *********************
REM *************** GAME BOARD OBJECT *********************
REM *************** *********************
REM ***
REM ***

REM
REM An example BrightScript constructor. "newGameBoard()" is regular Function of module
scope
REM BrightScript Objects are "dynamic" and created at runtime. They have no "class".
REM The object container is a BrightScript Component of type roAssocitiveArray (AA).
REM The AA is used to hold member data and member functions.
REM

Function newGameBoard() As Object
 game_board=CreateObject("roAssociativeArray") ' Create a BrightScript Component of
type/class roAssociativeArray
 game_board.Init=gbInit ' Add an entry to the AA of type
roFunction with value gbDraw (a sub defined in this module)

https://docs.brightsign.biz/display/DOC/Program+Statements#ProgramStatements-m_identifier
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

 game_board.Draw=gbDraw
 game_board.SetSnake=gbSetSnake
 game_board.EventLoop=gbEventLoop
 game_board.GameOver=gbGameOver
 game_board.StartX=gbStartX
 game_board.StartY=gbStartY
 game_board.Init() ' Call the Init member function
(which is gbInit)

 return game_board

End Function

REM
REM gbInit() is a member function of the game_board BrightScript Object.
REM When it is called, the "this" pointer "m" is set to the appropriate instance by
REM the BrightScript bytecode interpreter
REM
Function gbInit() As Void
 REM
 REM button presses go to this message port
 REM
 m.buttons = CreateObject("roMessagePort")
 m.gpio = CreateObject("roGpioControlPort")
 m.gpio.SetPort(m.buttons)

 REM
 REM determine optimal size and position for the snake gameboard
 REM
 CELLWID=16 ' each cell on game in pixels width
 CELLHI=16 ' each cell in pix height
 MAXWIDE=30 ' max width (in cells) of game board
 MAXHI=30 ' max height (in cells) of game board
 vidmode=CreateObject("roVideoMode")
 w=cint(vidmode.GetResX()/CELLWID)
 if w>MAXWIDE then w = MAXWIDE
 h=cint(vidmode.GetResY()/CELLHI)
 if h>MAXHI then h=MAXHI

 xpix = cint((vidmode.GetResX() - w*CELLWID)/2) ' center game board on screen
 ypix = cint((vidmode.GetResY() - h*CELLHI)/2) ' center game board on screen

 REM
 REM Create Text Field with square char cell size
 REM
 meta=CreateObject("roAssociativeArray")
 meta.AddReplace("CharWidth",CELLWID)
 meta.AddReplace("CharHeight",CELLHI)
 meta.AddReplace("BackgroundColor",&H202020) 'very dark grey
 meta.AddReplace("TextColor",&H00FF00) ' Green
 m.text_field=CreateObject("roTextField",xpix,ypix,w,h,meta)
 if type(m.text_field)<>"roTextField" then
 print "unable to create roTextField 1"
 stop
 endif
End Function

REM
REM As Object refers to type BrightScript Component
REM m the "this" pointer
REM
Sub gbSetSnake(snake As Object)
 m.snake=snake
End Sub

Function gbStartX() As Integer
 return cint(m.text_field.GetWidth()/2)
End Function

Function gbStartY() As Integer
 return cint(m.text_field.GetHeight()/2)
End Function

Function gbEventLoop() As Void

 tick_count=0

 while true
 msg=wait(250, m.buttons) ' wait for a button, or 250ms (1/4 a second) timeout
 if type(msg)="roGpioButton" then
 if msg.GetInt()=1 m.snake.TurnNorth()
 if msg.GetInt()=2 m.snake.TurnSouth()
 if msg.GetInt()=3 m.snake.TurnEast()
 if msg.GetInt()=4 m.snake.TurnWest()
 else 'here if time out happened, move snake forward
 tick_count=tick_count+1
 if tick_count=6 then
 tick_count=0
 if m.snake.MakeLonger(m.text_field) then return
 else
 if m.snake.MoveForward(m.text_field) then return
 endif
 endif
 end while

End Function

Sub gbDraw()
 REM
 REM given a roTextField Object in "m.text_field", draw a box around its edge
 REM

 solid=191 ' use asc("*") if graphics not enabled
 m.text_field.Cls()

 for w=0 to m.text_field.GetWidth()-1
 print #m.text_field,@w,chr(solid);
 print #m.text_field,@m.text_field.GetWidth()*(m.text_field.GetHeight()-1)+w,chr
(solid);
 end for

 for h=1 to m.text_field.GetHeight()-2
 print #m.text_field,@h*m.text_field.GetWidth(),chr(solid);
 print #m.text_field,@h*m.text_field.GetWidth()+m.text_field.GetWidth()-1,chr(solid);
 end for

 m.snake.Draw(m.text_field)

End Sub

Function gbGameOver() As Boolean
 msg$= " G A M E O V E R "
 msg0$=" "
 width = m.text_field.GetWidth()
 height = m.text_field.GetHeight()

 while true
 print #m.text_field,@width*(height/2-1)+(width-len(msg$))/2,msg$;
 sleep(300)

 print #m.text_field,@width*(height/2-1)+(width-len(msg$))/2,msg0$;
 sleep(150)
 REM GetMessage returns the message object, or an int 0 if no message available
 If m.buttons.GetMessage() <> invalid Then Return False
 endwhile

End Function

REM ***
REM ***
REM ****************** ***********************
REM ****************** SNAKE OBJECT ***********************
REM ****************** ***********************
REM ***
REM ***

REM
REM construct a new snake BrightScript object
REM
Function newSnake(x As Integer, y As Integer) As Object

' Create AA BrightScript Component; the container for a "BrightScript Object"
 snake=CreateObject("roAssociativeArray")
 snake.Draw=snkDraw
 snake.TurnNorth=snkTurnNorth
 snake.TurnSouth=snkTurnSouth
 snake.TurnEast=snkTurnEast
 snake.TurnWest=snkTurnWest
 snake.MoveForward=snkMoveForward
 snake.MakeLonger=snkMakeLonger
 snake.AddSegment=snkAddSegment
 snake.EraseEndBit=snkEraseEndBit

 REM
 REM a "snake" is a list of line segments
 REM a line segment is an roAssociativeArray that conains a length and direction (given by
the x,y delta needed to move as it is drawn)
 REM

 snake.seg_list = CreateObject("roList")
 snake.AddSegment(1,0,3)

 REM
 REM The X,Y pos is the position of the head of the snake
 REM
 snake.snake_X=x
 snake.snake_Y=y
 snake.body=191 ' use asc("*") if graphics not enabled.
 snake.dx=1 ' default snake direction / move offset
 snake.dy=0 ' default snake direction / move offset

 return snake

End Function

Sub snkDraw(text_field As Object)
 x=m.snake_X
 y=m.snake_Y
 for each seg in m.seg_list
 xdelta=seg.xDelta
 ydelta=seg.yDelta
 for j=1 to seg.Len
 text_field.SetCursorPos(x, y)
 text_field.SendByte(m.body)
 x=x+xdelta

 y=y+ydelta
 end for
 end for
End Sub

Sub snkEraseEndBit(text_field As Object)
 x=m.snake_X
 y=m.snake_Y
 for each seg in m.seg_list
 x=x+seg.Len*seg.xDelta
 y=y+seg.Len*seg.yDelta
 end for

 text_field.SetCursorPos(x, y)
 text_field.SendByte(32) ' 32 is ascii space, could use asc(" ")

End Sub

Function snkMoveForward(text_field As Object)As Boolean
 m.EraseEndBit(text_field)
 tail=m.seg_list.GetTail()
 REM
 REM the following shows how you can use an AA's member functions to perform the same
 REM functions the BrightScript . operator does behind the scenes for you (when used on an
AA).
 REM there is not point to this longer method other than illustration
 REM
 len=tail.Lookup("Len") ' same as len = tail.Len (or tail.len, BrightScript
syntax is not case sensative)
 len = len-1
 if len=0 then
 m.seg_list.RemoveTail()
 else
 tail.AddReplace("Len",len) ' same as tail.Len=len
 endif

 return m.MakeLonger(text_field)

End Function

Function snkMakeLonger(text_field As Object) As Boolean
 m.snake_X=m.snake_X+m.dx
 m.snake_Y=m.snake_Y+m.dy
 text_field.SetCursorPos(m.snake_X, m.snake_Y)
 if text_field.GetValue()=m.body then return true
 text_field.SendByte(m.body)
 head = m.seg_list.GetHead()
 head.Len=head.Len+1
 return false
End Function

Sub snkAddSegment(dx As Integer, dy As Integer, len as Integer)

 aa=CreateObject("roAssociativeArray")
 aa.AddReplace("xDelta",-dx) ' line segments draw from head to tail
 aa.AddReplace("yDelta",-dy)
 aa.AddReplace("Len",len)
 m.seg_list.AddHead(aa)

End Sub

Sub snkTurnNorth()
 if m.dx<>0 or m.dy<>-1 then m.dx=0:m.dy=-1:m.AddSegment(m.dx, m.dy, 0) 'north
End Sub

Sub snkTurnSouth()
 if m.dx<>0 or m.dy<>1 then m.dx=0:m.dy=1:m.AddSegment(m.dx, m.dy, 0) 'south
End Sub

Sub snkTurnEast()
 if m.dx<>-1 or m.dy<>0 then m.dx=-1:m.dy=0:m.AddSegment(m.dx, m.dy, 0) 'east
End Sub

Sub snkTurnWest()
 if m.dx<>1 or m.dy<>0 then m.dx=1:m.dy=0:m.AddSegment(m.dx, m.dy, 0) 'west
End Sub

Object Reference
ON THIS PAGE

Interfaces and Methods
Classes
Object and Class Name Syntax
Zones
Event Loops

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

BrightSign players use a standardized library of BrightScript objects to expose functionality for software development. To publish a new API for
interacting with BrightSign hardware, we create a new BrightScript object.

The pages in this section provide definitions for objects that can be used in BrightScript. A brief description, a list of interfaces, and the member
functions of the interfaces are provided for each object class. While most BrightScript objects have self-contained pages, some objects are
grouped on the same page if they are closely related or depend on one another for functionality.

Here is a sample of objects that are used frequently when creating applications in BrightScript:

roVideoMode Configures video output and interacts with displays using CEC/EDID.

roRectangle Used to define zones/widgets on the screen. This object is passed
to many other objects to define their screen area, including roVideoP

, , , ,layer roImagePlayer, roImageWidget roHtmlWidget roClockWidget
 and roCanvasWidget.

roVideoPlayer Plays video files, streams, and HDMI input.

roImagePlayer Displays images.

roHtmlWidget Displays local or remote HTML content using the Chromium
rendering engine.

roNetworkConfiguration Used to configure Ethernet, WiFi, and local network parameters.

roDeviceInfo Used to retrieve a wide array of system information, including model
type, device serial number, and firmware version.

Interfaces and Methods

Every BrightScript object consists of one or more "interfaces." An interface consists of one or more "methods." For example, the objroVideoPlayer
ect has several interfaces, including . The interface has one method: . ifMessagePort ifMessagePort SetPort()

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

The abstract interface is exposed and implemented by both the and the objects. Once the SetPort() ifMessagePort roControlPort roVideoPlayer
method is called, these objects will send their events to the supplied message port. This is discussed more in the Event Loops section below.

Example
p = CreateObject("roMessagePort")
video = CreateObject("roVideoPlayer")
gpio = CreateObject("roControlPort", "BrightSign")
gpio.SetPort(p)
video.SetPort(p)

The above syntax makes use of a shortcut provided by the language: The interface name is optional, unless it is needed to resolve name
conflicts. For example, the following two lines of code carry out the exact same function:

gpio.SetPort(p)
gpio.ifMessagePort.SetPort(p)

BrightScript Objects consist of interfaces, and interfaces define methods. There is no concept of a "property" or variable at the object or only only
interface level. These must be implemented as "set" or "get" methods in an interface.

Classes

A is used to create a BrightScript object. For example, the class name for a video playback instance is , so, to initialize class name roVideoPlayer
a video playback instance, you would use code similar to the following:

Example
video = CreateObject("roVideoPlayer")

Note that "video" can be any name that follows the syntax outlined in the next section.

Object and Class Name Syntax

Class names have the following characteristics:

Must start with an alphabetic character (a – z).
May consist of alphabetic characters, numbers, or the "_" (i.e. underscore) symbol.
Are not case sensitive.
May be of any reasonable length.

Zones

With the BrightSign Zones feature, you can divide the screen into rectangles and play different content in each rectangle.

Depending on the BrightSign model, zones can contain video, images, HTML content, audio, a clock, or text. 4Kx42, XDx32, and XDx30 models
can display two video zones on screen, while the HDx22, HDx20, and LSx22 models can only display one. There can be multiple zones of other
types on the screen. A text zone can contain simple text strings or can be configured to display an RSS feed in a ticker-type display.

As of firmware 6.0.x, zone support is enabled by default. When zones are enabled, the image layer is on top of the video layer by default. The
default behavior can be modified using the method. roVideoMode.SetGraphicsZOrder()

Zone support can be disabled by calling . When zones are not enabled, the image layer is hidden whenever EnableZoneSupport(false)
video is played, and the video layer is hidden whenever images are played.

Event Loops

1.
2.
3.

1.
2.

3.

4.

When writing anything more than a very simple script, an "event loop" will need to be created. Event loops typically have the following structure:

Wait for an event.
Process the event.
Return to step 1.

An event can be any number occurrences: a button has been pressed; a timer has been triggered; a UDP message has been received; a video
has finished playing back; etc. By convention, event scripting for BrightScript objects follows this work flow:

An object of the type is created by the script.roMessagePort
Objects that can send events (i.e. those that support the interface) are instructed to send their events to ifMessagePort/ifSetMessagePort
this message port using the method. You can set up multiple message ports and have each event go to its own message SetPort()
port, but it is usually simpler to create one message port and have all the events sent to this one port.
The script waits for an event using the built-in statement (or the method).Wait() ifMessagePort.WaitMessage()
If multiple object instances are assigned to the same message port, the script determines from which instance the event originated, then
processes it. The script then jumps back to the statement.Wait()

Example
'Listens for UDP messages on two different ports and displays the image file requested in the
UDP message body.
mp = CreateObject("roMessagePort")

udp1 = CreateObject("roDatagramReceiver", 3000)
udp1.SetPort(mp)
udp1.SetUserData("port 3000")

udp2 = CreateObject("roDatagramReceiver", 5000)
udp2.SetPort(mp)
udp2.SetUserData("port 5000")

r = CreateObject("rorectangle",0, 0, 1920, 1080)
img = CreateObject("roImagePlayer")
img.SetRectangle(r)

loop:
event = Wait(0, mp)
if type(event) = "roDatagramEvent"
 print "Image play command received on " + event.GetUserData() + "."
 img = DisplayFile("SD:/" + event.GetString())
 endif
endif
goto loop

Global Functions

ON THIS PAGE

ifGlobal
CreateObject(name As String) As Object
RestartScript() As Void
RestartApplication() As Void
Sleep(milliseconds As Integer)
asc(letter As String) As Integer
chr(character As Integer) As String
len(target_string As String) As Integer
str(value As Double) As String
strI(value As Integer) As String
val(target_string As String) As Double
abs(x As Double) As Double
atn(x As Double) As Double
csng(x As Integer) As Float
cdbl(x As Integer) As Double

cint(x As Double) As Integer
cos(x As Double) As Double
exp(x As Double) As Double
fix(x As Double) As Integer
int(x As Double) As Integer
log(x As Double) As Double
sgn(x As Double) As Integer
sgnI(x As Integer) As Integer
sin(x As Double) As Double
tan(x As Double) As Double
sqr(x As Double) As Double
Left(target_string As String, n As Integer) As String
Right(target_string As String, n As Integer) As String
StringI(n As Integer, character As Integer) As String
String(n As Integer, character As String) As String
Mid(target_string As String, start_position As Integer, length As Integer) As String
Instr(start_position As Integer, search_text As String, substring As String) As Integer
GetInterface(object As Object, ifname As String) As Interface
Wait(timeout As Integer, port As Object) As Object
ReadAsciiFile(file_path As String) As String
WriteAsciiFile(file_path As String, buffer As String) As Boolean
ListDir(path As String) As Object
MatchFiles(path As String, pattern_in As String) As Object
LCase(target_string As String) As String
UCase(target_string As String) As String
DeleteFile(file_path As String) As Boolean
DeleteDirectory(diretory As String) As Boolean
CreateDirectory(directory As String) As Boolean
RebootSystem() As Void
ShutdownSystem() As Void
UpTime(dummy As Integer) As Double
FormatDrive(drive As String, fs_type As String) As Boolean
EjectDrive(drive As String) As Boolean
CopyFile(source As String, destination As String) As Boolean
MoveFile(source As String, destination As String) As Boolean
MapFilenameToNative(path As String) As String
strtoi(target_string As String) As Integer
rnd(a As Dynamic) As Dynamic
RunGarbageCollector() As roAssociativeArray
GetDefaultDrive() As String
SetDefaultDrive(drive As String)
EnableZoneSupport(enable As Boolean)
EnableAudioMixer(enable As Boolean)
Pi() As Double
ParseJson(json_string As String) As Object
FormatJson(json As roAssociativeArray, flags As Integer) As String

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

BrightScript provides a set of standard, module-scope functions that are stored in the global object. If a global function is referenced, the compiler
directs the runtime to call the appropriate global object member. When calling a global function, you do not need to use the to dot operator
reference the object.roGlobal

Note

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/display/DOC/Operators#Operators-Dot_Operator

ifGlobal

CreateObject(name As String) As Object

Creates a BrightScript object corresponding to the specified class name. This method returns invalid if object creation fails. Some objects have
parameters in their constructor, which must be passed after the class in a comma-separated list.name

sw = CreateObject("roGpioControlPort")
serial = CreateObject("roSerialPort", 0, 9600)

RestartScript() As Void

Exits the current script. The system then scans for a valid file to run.autorun.brs

RestartApplication() As Void

Restarts the BrightSign application.

Sleep(milliseconds As Integer)

Instructs the script to pause for a specified amount of time without wasting CPU cycles. The sleep interval is specified in milliseconds.

asc(letter As String) As Integer

Returns the ASCII code for the first character of the specified string. A null-string argument will cause an error.

chr(character As Integer) As String

Returns a one-character string containing a character reflected by the specified ASCII or control. For example, because quotation marks are
normally used as string delimiters, you can pass ASCII code 34 to this function to add quotes to a string.

len(target_string As String) As Integer

Returns the number of characters in a string.

str(value As Double) As String

Converts a specified float value to a string. This method also returns a string equal to the character representation of a value. For example, if A is
assigned a value of 58.5, then calling will return "58.5" as a string.str(A)

strI(value As Integer) As String

Converts a specified integer value to a string. This method also returns a string equal to the character representation of a value. For example, if A
is assigned a value of 58.5, then calling will return "58" as a string.stri(A)

val(target_string As String) As Double

Returns a number represented by the characters in the string argument. This is the opposite of the function. For example, if A is assigned str()
the string "58", and B is assigned the string "5", then calling will return the float value 58.5.val(A+"."+B)

abs(x As Double) As Double

Returns the absoule vale of the argument .x

atn(x As Double) As Double

Returns the arctangent (in radians) of the argument (i.e. returns "the angle whose tangent is "). To get the arctangent in degrees, x Atn(x) x
multiply by 57.29578.Atn(x)

csng(x As Integer) As Float

Returns a single-precision float representation of the argument .x

Global trigonometric functions accept and return values in radians, not degrees.

cdbl(x As Integer) As Double

Returns a double-precision float representation of the argument .x

cint(x As Double) As Integer

Returns an integer representation of the argument by rounding to the nearest whole number.x

cos(x As Double) As Double

Returns the cosine of the arugment . The argument must be in radians. To obtain the cosine of when is in degrees, use x x x Cos(x*.
.01745329)

exp(x As Double) As Double

Returns the natural exponential of . This is the inverse of the function.x log()

fix(x As Double) As Integer

Returns a truncated representation of the argument . All digits to the right of the decimal point are removed so that the resultant value is an x
integer. For non-negative values of , is equal to . For negative values of , is equal to .x fix(x) int(x) x fix(x) int(x)+1

int(x As Double) As Integer

Returns an integer representation of the argument using the largest whole number that is not greater than the argument. For example, x int
 returns 2, while returns -3.(2.2) fix(-2.5)

log(x As Double) As Double

Returns the natural logarithm of the argument (i.e.). This is the inverse of the function. To find the logarithm of a number to a i log (x)e exp()

base , use the following formula .b : log (x) = log (x)/log (b)b e e

sgn(x As Double) As Integer

Returns an integer representing how the float argument is signed: -1 for negative, 0 for zero, and 1 for positive.x

sgnI(x As Integer) As Integer

Returns an integer representing how the integer argument is signed: -1 for negative, 0 for zero, and 1 for positive.x

sin(x As Double) As Double

Returns the sine of the argument . The argument must be in radians. To obtain the sine of when is in degrees, use .x x x sin(x*.01745329)

tan(x As Double) As Double

Returns the tangent of the argument . The argument must be in radians. To obtain the tangent of when is in degrees, use x x x tan(x*.
.01745329)

sqr(x As Double) As Double

Returns the square root of the argument . This function is the same as , but calculates the result faster. x x^(1/2)

Left(target_string As String, n As Integer) As String

Returns the first characters of the specified string.n

Right(target_string As String, n As Integer) As String

Returns the last characters of the specified string.n

StringI(n As Integer, character As Integer) As String

Returns a string composed of a character symbol repeated times. The character symbol is passed to the method as an ASCII code integer.n

String(n As Integer, character As String) As String

Returns a string composed of a character symbol repeated times. The character symbol is passed to the method as a string.n

Mid(target_string As String, start_position As Integer, length As Integer) As String

Returns a substring of the target string. The first integer passed to the method specifies the starting position of the substring, and the second
integer specifies the length of the substring. The start position of a string begins with 1.

Instr(start_position As Integer, search_text As String, substring As String) As Integer

Returns the position of a substring within a string. This function is case sensitive and returns 0 if the specified substring is not found. The start
position of a string begins with 1.

GetInterface(object As Object, ifname As String) As Interface

Returns a value of the type Interface. All objects have one or more interfaces. In most cases, you can skip interface specification when calling an
object component. This will not cause problems as long as the method names within a function are unique.

Wait(timeout As Integer, port As Object) As Object

Instructs the script to wait on an object that has an interface. This method will return the event object that was posted to the ifMessagePort
message port. If the timeout is specified as zero, will wait indefinitely; otherwise, will return Invalid after the specified number of Wait() Wait()
milliseconds if no messages have been received.

p = CreateObject("roMessagePort")
sw = CreateObject("roGpioControlPort")
sw.SetPort(p)
msg=wait(0, p)
print type(msg) ' should be roGpioButton
print msg.GetInt() ' button number

ReadAsciiFile(file_path As String) As String

Reads the specified text file and returns it as a string.

WriteAsciiFile(file_path As String, buffer As String) As Boolean

Creates a text file at the specified file path. The text of the file is passed as the second parameter. This method cannot be used to edit files: A
preexisting text file will be overwritten if it has the same name and directory path as the one being created.

ListDir(path As String) As Object

Returns an object containing the contents of the specified directory path. File names are converted to all lowercase.roList

MatchFiles(path As String, pattern_in As String) As Object

Takes a directory to look in (it can be as simple as "." or "/") and a pattern to be matched and then returns an containing the results. Each roList
listed result contains only the part of the filename that is matched against the pattern, not the full path. The match is only applied in the specified
directory; you will get no results if the pattern contains a directory separator. The pattern is a case insensitive wildcard expression. It may contain
the following special characters:

? – Matches any single character.
* – Matches zero or more arbitrary characters.
[…] – Matches any single character specified within the brackets. The closing bracket is treated as a member of the character class if it
immediately follows the opening bracket (i.e. "[]]" matches a single closed bracket). Within this class, "-" can be used to specify a range
unless it is the first or last character (e.g. "[A-Cf-h"] is equivalent to "[ABCfgh]"). A character class may be negated by specifying "^" as
the first character. To match a literal of this character, place it elsewhere in the class.

Tip

The string object also offers an method (though it uses a zero-based index). See the documentation for more details.Instr() roString

Note

The object provides more flexibility if you need to create or edit files.roCreateFile

https://docs.brightsign.biz/display/DOC/roInt%2C+roFloat%2C+roString#roInt,roFloat,roString-instr()

LCase(target_string As String) As String

Converts the specified string to all lowercase.

UCase(target_string As String) As String

Converts the specified string to all uppercase.

DeleteFile(file_path As String) As Boolean

Deletes the file at the specified file path. This method returns False if the delete operation fails or if the file does not exist.

DeleteDirectory(diretory As String) As Boolean

Deletes the specified directory. This method will recursively delete any files and directories that are necessary for removing the specified
directory. This method returns False if it fails to delete the directory, but it may still delete some of the nested files or directories.

CreateDirectory(directory As String) As Boolean

Creates the specified directory. Only one directory can be created at a time. This method returns True upon success and False upon failure.

RebootSystem() As Void

Instructs the player to perform a soft reboot.

ShutdownSystem() As Void

UpTime(dummy As Integer) As Double

Returns the uptime of the system (in seconds) since the last reboot.

FormatDrive(drive As String, fs_type As String) As Boolean

Formats the specified drive using one of the file systems listed below. This function returns True upon success and False upon failure:

vfat (DOS/Windows file system): Readable and writable by Windows, Linux, and MacOS.

ext2 (Linux file system): Writable by Linux and readable by Windows and MacOS with additional software.

ext3 (Linux file system): Writable by Linux and readable by Windows and MacOS with additional software.

ext4 (Linux file system): Writable by Linux and readable by Windows and MacOS with additional software. This is the recommended file
system for SSD devices and USB hard drives.

EjectDrive(drive As String) As Boolean

Ejects the specified drive (e.g. "SD:") and returns True if successful. If the script is currently accessing files from the specified drive, the ejection
process will fail.

CopyFile(source As String, destination As String) As Boolean

Copies the file at the specified source file-path to the specified destination directory. The function returns True if successful and False in the event
of failure.

MoveFile(source As String, destination As String) As Boolean

Moves the specified source file to the specified destination directory. The function returns True if successful and False in the event of failure.

MapFilenameToNative(path As String) As String

Note

The special characters "?", "*", and "[" lose their function if preceded by a single "\", and a single "\" can be matched using "\\".

Note

Both path names must be on the same drive.

Converts the specified BrightScript-style path to the corresponding native path and returns it as a string (e.g. the path "SD:/mydir" will be returned
as "/storage/sd/mydir").

strtoi(target_string As String) As Integer

Converts the target string to an integer. Any non-integer characters (including decimal points and spaces), and any numbers to the right of a non-
integer character, will not be part of the integer output.

rnd(a As Dynamic) As Dynamic

RunGarbageCollector() As roAssociativeArray

Destroys objects that are currently in a state of circular reference counting. BrightScript normally removes any objects that become unreferenced
as part of its automated garbage collection algorithm. However, objects that reference each other will never reach a reference count of zero, and
will need to be destroyed manually using this method.

This method is useful when destroying old presentation data structures and generating a new presentation. This method returns an associative
array outlining the results of the garbage-collection process.

GetDefaultDrive() As String

Returns the current default drive complete with a trailing slash. When running as , the drive containing the autorun is designated as autorun.brs
the current default.

SetDefaultDrive(drive As String)

Sets the current default drive, which does not need to include a trailing slash. This method does not fail; however, if the specified default drive
does not exist, it will not be possible to retrieve anything.

This method accepts the following values:

"USB1:" – The drive for USB storage devices connected to the player

"SD:" – The primary SD or microSD drive on the player.

"SD2:" – The internal microSD drive on the player (4Kx42, XDx32 models only)

"SSD:" – The internal SSD on the player (XTx43, XDx33 models only)

EnableZoneSupport(enable As Boolean)

Allows for display of multiple video, HTML, image, and text zones. As of firmware 6.0.x, zone support is enabled by default.

EnableAudioMixer(enable As Boolean)

Pi() As Double

Returns the value of pi as a double-precision floating-point number.

ParseJson(json_string As String) As Object

Parses a string formatted according to the RFC4627 standard and returns an equivalent BrightScript object, which can consist of the following:
Booleans, integers, floating point numbers, strings, objects, and objects. The method has the roArray roAssociativeArray ParseJson()
following properties:

Invalid will be returned if the string is not syntactically correct.
Any objects that are returned will be case sensitive.roAssociativeArray
An error will be returned if an or is nested more than 256 levels deep.roArray roAssociativeArray

The following script demonstrates how to use to process a JSON object containing the titles and URLs of a set of images.ParseJson()

JSON Script
{
"photos" : [
 {
 "title" : "View from the hotel",

 "url" : "http://example.com/images/00012.jpg"
 },
 {
 "title" : "Relaxing at the beach",
 "url" : "http://example.com/images/00222.jpg"
 },
 {
 "title" : "Flat tire",
 "url" : "http://example.com/images/00314.jpg"
 }
]
}

BrightScript
searchRequest = CreateObject("roUrlTransfer")
searchRequest.SetURL("http://api.example.com/services/rest/getPhotos")
response = ParseJson(searchRequest.GetToString())
For Each photo In response.photos
 GetImage(photo.title, photo.url)
End For

FormatJson(json As roAssociativeArray, flags As Integer) As String

Converts an associative array to a JSON string (i.e. formatted according to the RFC4627 standard). The following are supported data types:
Boolean, Integer, Float, String, , and . If the parameter is set to 0 or not specified, non-ASCII characters are roArray roAssociativeArray flags
escaped in the output string as “\uXXXX”, where “XXXX” is the hexadecimal representation of the Unicode character value. If the parameteflags
r is set to 1, non-ASCII characters are not escaped.

If arrays or associative arrays are nested more than 256 levels deep, an error will occur. If an error occurs, an empty string will be returned.

BrightScript Core Objects

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This section describes objects that provide core BrightScript functionality.

roArray
roAssociativeArray
roBoolean
roByteArray
roDouble, roIntrinsicDouble
roFunction
roInt, roFloat, roString
roJRE
roList

Important

By default, using object-literal syntax (e.g.) to generate an associative array will convert keys to all aa={relativePath:"Foo"}
lower case. To preserve camel case for JSON, use the method instead of object literals or call roAssociativeArray.AddReplace() roAsso

before adding entries.ciativeArray.SetModeCaseSensitive()

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

roMessagePort
roRegex
roXMLElement
roXMLList

roArray

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

ON THIS PAGE

ifArray
Peek() As Dynamic
Pop() As Dynamic
Push(entry As Dynamic)
Shift() As Dynamic
Unshift(entry As Dynamic)
Delete(index As Integer) As Boolean
Count() As Integer
Clear()
Append(array As roArray)

ifEnum
Reset()
Next() As Dynamic
IsNext() As Boolean
IsEmpty() As Boolean

ifArrayGet
GetEntry(index As Integer) As Dynamic

ifArraySet
SetEntry(a As Integer, b As Dynamic)

This object stores objects in a continuous array of memory locations. Since an contains BrightScript components, and there are object roArray
wrappers for most intrinsic data types, entries can either be different types or all of the same type.

Object Creation: The object is created with two parameters. roArray

CreateObject("roArray", size As Integer, resize As Boolean)

size: The initial number of entries allocated for the array.

resize: If true, the array will be resized larger to accommodate more entries if needed. If the array is large, this process might take
some time.

The statement may be used instead of the function to create a new array. The statement can be advantageous DIM CreateObject() DIM
because it automatically creates array-of-array structures for multi-dimensional arrays.

ifArray

Peek() As Dynamic

Returns the last (highest index) array entry without removing it.

Pop() As Dynamic

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/display/DOC/Program+Statements#ProgramStatements-dim

Returns the last (highest index) entry and removes it from the array.

Push(entry As Dynamic)

Adds a new highest-index entry to the end of the array.

Shift() As Dynamic

Removes index zero from the array and shifts all other entries down by one unit.

Unshift(entry As Dynamic)

Adds a new index zero to the array and shifts all other entries up by one unit.

Delete(index As Integer) As Boolean

Deletes the indicated array entry and shifts all above entries down by one unit.

Count() As Integer

Returns the length of the array (i.e. the index of the highest entry in the array plus one).

Clear()

Deletes every entry in the array.

Append(array As roArray)

Appends one to another. If the passed contains entries that were never set to a value, they are not appended.roArray roArray

ifEnum

Reset()

Resets the position to the first element of enumeration.

Next() As Dynamic

Returns a typed value at the current position and increments the position.

IsNext() As Boolean

Returns True if there is a next element.

IsEmpty() As Boolean

Returns True if there is not an exact statement.

ifArrayGet

GetEntry(index As Integer) As Dynamic

Returns an array entry of a given index. Entries start at zero. If the entry at the specified index has not been set, this method will return Invalid.

ifArraySet

SetEntry(a As Integer, b As Dynamic)

Sets an entry of a given index to the passed type value.

Note

The two appended objects must be of the same type.

roAssociativeArray

ON THIS PAGE

ifEnum
Reset() As Void
Next() As Dynamic
IsNext() As Boolean
IsEmpty() As Boolean

ifAssociativeArray
AddReplace(key As String, value As Object) As Void
Lookup(key As String) As Dynamic
DoesExist(key As String) As Boolean
Delete(key As String) As Boolean
Clear() As Void
SetModeCaseSensitive() As Void
LookupCi(key As String) As Dynamic
Append(aa As roAssociativeArray) As Void

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object allows you to store objects in an associative array (also known as a map, dictionary, or hash table), a data structure that associates
objects with string keys.

The object is created with no parameters: roAssociativeArray

CreateObject("roAssociativeArray")

Alternatively, an associative array can be created using brackets:

Example
aa1 = {}
aa2 = {key1:"value", key2: 55, key3: 5+3 }

ifEnum

Reset() As Void

Resets the position to the first element of enumeration.

Next() As Dynamic

Returns a typed value at the current position and increments the position.

IsNext() As Boolean

Returns if there is a next element.true

IsEmpty() As Boolean

Returns if the associative array contains no elements.true

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifAssociativeArray

AddReplace(key As String, value As Object) As Void

Adds a new entry to the associative array, associating the supplied object with the supplied key string. Only one object may be associated with a
key, so any existing object linked to that key is discarded. This method is always case-sensitive when creating keys, whereas object-literal syntax
(e.g.) is case-insensitive when creating keys unless is called.aa={bright:"Sign"} SetModeCaseSensitive()

Lookup(key As String) As Dynamic

Looks up the specified key and returns the associated object. If there is no object associated with the key string, then this method will return
Invalid.

DoesExist(key As String) As Boolean

Looks up the specified key in the associative array. If the key exists, is returned; otherwise, is returned.true false

Delete(key As String) As Boolean

Looks for an object in the associative array linked to the specified key. If there is such an object, it is deleted and is returned; otherwise, true fal
 is returned.se

Clear() As Void

Removes all objects from the associative array.

SetModeCaseSensitive() As Void

Makes all subsequent actions case sensitive. All lookups and created keys (with the exception of the method) are case AddReplace()
insensitive by default.

LookupCi(key As String) As Dynamic

Looks for an object in the array associated with the specified key. This method functions similarly to , with the exception that key Lookup()
comparisons are always case insensitive, regardless of case mode.

Append(aa As roAssociativeArray) As Void

Appends a second associative array to the first.

Example
aa = CreateObject("roAssociativeArray")
aa.AddReplace("Bright", "Sign")
aa.AddReplace("TMOL", 42)
print aa.Lookup("tmol")
print aa.Lookup("bright")

The above script returns the following:

42
Sign

Tip

In many cases, the can be used as shorthand for the and methods when working with Dot Operator Lookup() AddReplace()
associative arrays.

https://docs.brightsign.biz/display/DOC/Operators#Operators-Dot_Operator

Alternatively, you can use the in place of the and methods: Dot Operator AddReplace() Lookup()

Example
aa = {}
aa.bright = "Sign"
aa.tmol = 42
print aa.tmol
print aa.bright

You can also specify an associative array as a multiline object literal:

Example
aa = {
bright : "Sign",
tmol : 42,
pie : 3.14
}

roBoolean

ON THIS PAGE

ifBoolean
GetBoolean() As Boolean
SetBoolean(a As Boolean)

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This is the object equivalent of the Boolean intrinsic type. It is useful in the following situations:

When an object is needed instead of an intrinsic value: For example, if a Boolean is added to , it will be automatically wrapped roList
in an object by the language interpreter. When a function that expects a BrightScript component as a parameter is passed a roBoolean
Boolean, BrightScript automatically creates the equivalent BrightScript component.
When an object exposes the interfaceifBoolean : That object can then be used in any expression that expects an intrinsic value.

ifBoolean

GetBoolean() As Boolean

SetBoolean(a As Boolean)

roByteArray

ON THIS PAGE

ifByteArray
WriteFile(file_path As String) As Boolean
WriteFile(file_path As String, start_index As Integer, length As Integer) As Boolean

https://docs.brightsign.biz/display/DOC/Operators#Operators-Dot_Operator
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ReadFile(file_path As String) As Boolean
ReadFile(file_path As String, start_index As Integer, length As Integer) As Boolean
AppendFile(file_path As String) As Boolean
SetResize(minimum_allocation_size As Integer, autoresize As Boolean)
ToHexString() As String
FromHexString(hex_string As String)
ToBase64String() As String
FromBase64String(base_64_string As String)
ToAsciiString() As String
FromAsciiString(ascii_string As String)
GetSignedByte(index As Integer) As Integer
GetSignedLong(index As Integer) As Integer
IsLittleEndianCPU() As Boolean

ifArray
Peek() As Dynamic
Pop() As Dynamic
Push(entry As Dynamic)
Shift() As Dynamic
Unshift(entry As Dynamic)
Delete(index As Integer) As Boolean
Count() As Integer
Clear()
Append(array As roArray)

ifEnum
Reset()
Next() As Dynamic
IsNext() As Boolean
IsEmpty() As Boolean

ifArrayGet
GetEntry(index As Integer) As Dynamic

ifArraySet
SetEntry(index As Integer, entry As Dynamic)

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object contains functions for converting strings to or from a byte array, as well as to or from ASCII hex or ASCII base64.

The byte array will automatically resize to become larger as needed. If you wish to disable this behavior, use the method. If an SetResize()
uninitialized index is read, Invalid is returned.

Since supports the interface, it can be accessed with the array operator. The byte array is always accessed as unsigned roByteArray ifArray []
bytes while this interface is being used. This object also supports the interface, and so can be used with a statement. ifEnum FOR EACH

ifByteArray

WriteFile(file_path As String) As Boolean

Writes the bytes contained in the byte array to the specified file. This method returns True if successful.

WriteFile(file_path As String, start_index As Integer, length As Integer) As Boolean

Note

If you are converting a byte array to a string, and the byte array contains a zero, the string conversion will end at that point.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Writes a subset of the bytes contained in the byte array to the specified file. This method writes bytes, beginning at of the length start_index
byte array.

ReadFile(file_path As String) As Boolean

Reads the specified file into the byte array. This operation will discard any data currently contained in the byte array.

ReadFile(file_path As String, start_index As Integer, length As Integer) As Boolean

Reads a section of the specified file into the byte array. This method reads bytes, beginning at of the file. This operation length start_index
will discard any data currently contained in the byte array.

AppendFile(file_path As String) As Boolean

Appends the contents of the byte array to the specified file.

SetResize(minimum_allocation_size As Integer, autoresize As Boolean)

Expands the size of the byte array to the if it is less than the . This method also minimum_allocation_size minimum_allocation_size
accepts a Boolean parameter that specifies whether the byte array should be resized automatically or not.

ToHexString() As String

Returns a hexadecimal string representation of the contents of the byte array. Each byte is represented as two hex digits.

FromHexString(hex_string As String)

Writes the contents of the passed hexadecimal string to the byte array. The passed string must contain an even number of hex digits. This
operation will discard any data currently contained in the byte array.

ToBase64String() As String

Returns the contents of the byte array as a base64-formatted string.

FromBase64String(base_64_string As String)

Writes the contents of a valid base64-formatted string to the byte array. This operation will discard any data currently contained in the byte array.

ToAsciiString() As String

Returns the contents of the byte array as an ASCII-formatted string.

FromAsciiString(ascii_string As String)

Writes the contents of a valid ASCII-formatted string to the byte array. This operation will discard any data currently contained in the byte array.

GetSignedByte(index As Integer) As Integer

Returns the signed byte at the specified zero-based index in the byte array. To read an unsigned byte within a byte array, use the ifArrayGet.
method or the array operator.GetEntry() []

GetSignedLong(index As Integer) As Integer

Retrieves the integer located at the specified long-word index of the byte array. Note that this method cannot accept a byte index as its parameter.

IsLittleEndianCPU() As Boolean

Returns True if the CPU architecture is little-endian.

ifArray

Peek() As Dynamic

Returns the last (highest index) array entry without removing it.

Pop() As Dynamic

Returns the last (highest index) entry and removes it from the array.

Push(entry As Dynamic)

Adds a new highest index entry to the end of the array.

Shift() As Dynamic

Removes index zero from the array and shifts all other entries down by one unit.

Unshift(entry As Dynamic)

Adds a new index zero to the array and shifts all other entries up by one unit.

Delete(index As Integer) As Boolean

Deletes the indicated array entry and shifts all above entries down by one unit.

Count() As Integer

Returns the index of the highest entry in the array plus one (i.e. the length of the array).

Clear()

Deletes every entry in the array.

Append(array As roArray)

Appends one to another. If the passed contains entries that were never set to a value, they are not appended.roArray roArray

ifEnum

Reset()

Resets the position to the first element of enumeration.

Next() As Dynamic

Returns a typed value at the current position and increment position.

IsNext() As Boolean

Returns True if there is a next element.

IsEmpty() As Boolean

Returns True if there is not an exact statement.

ifArrayGet

GetEntry(index As Integer) As Dynamic

Returns an array entry of a given index. Entries start at zero. If this method attempts to fetch an entry that has not been set, it will return Invalid.

ifArraySet

SetEntry(index As Integer, entry As Dynamic)

Sets an entry of a given index to the passed type value.

roDouble, roIntrinsicDouble

Note

The two appended objects must be of the same type.

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

ON THIS PAGE

ifDouble
GetDouble() As Double
SetDouble(a As Double)

ifDouble

GetDouble() As Double

SetDouble(a As Double)

roFunction

ON THIS PAGE

ifFunction
GetSub() As Function
SetSub(value As Function)

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

ifFunction

GetSub() As Function

SetSub(value As Function)

roInt, roFloat, roString

ON THIS PAGE

ifInt
GetInt() As Integer
SetInt(value As Integer) As Void

ifIntOps
ToStr() As String

ifFloat
GetFloat() As Float
SetFloat(value As Float) As Void

ifString
GetString() As String
SetString(value As String) As Void

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifStringOps
SetString(str As String, str_len As Integer)
AppendString(str As String, str_len As Integer)
Len() As Integer
GetEntityEncode() As String
Tokenize(delim As String) As roList
Trim() As String
ToInt() As Integer
ToFloat() As Float
Left(n As Integer) As String
Right(n As Integer) As String
Mid(start_index As Integer) As String
Mid(start_index As Integer, n As Integer) As String
Instr(substring As String) As Integer
Instr(start_index As Integer, substring As String) As Integer

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

The , , and have object and interface equivalents. These are useful in the following situations:intrinsic types Int32 Float String

An object is needed instead of a typed value (e.g. the object maintains a list of objects). When a function that expects a roList
BrightScript object as a parameter is passed an integer, float, or string, BrightScript automatically creates the equivalent object.
If any object exposes the , , or interfaces, that object can be used in any expression that expects a typed value. For ifInt ifFloat ifString
example, an can be used as an integer with a value representing the event ID.roVideoEvent

Integer Operations

If "o" is of type , then these statements will have the following effects:roInt

print o: Prints the value of o.GetInt()

i%=o: Assigns the integer the value of i% o.GetInt().

k=o: Presumably is automatically typed, so it becomes another reference to the k roInt o.
o=5: This is NOT the same as . Instead it releases , changes the type of to (is automatically typed), and o.SetInt(5) o o roINT32 o
assigns it to 5.

ifInt

roInt contains the interface, which provides the following: ifInt

GetInt() As Integer

Returns the integer value of the object.

SetInt(value As Integer) As Void

Sets the integer value of the object.

ifIntOps

roInt also contains the interface, which provides the following: ifIntOps

ToStr() As String

Returns the integer value as a string. A space is not appended to the front for positive numbers.

ifFloat

roFloat contains interface, which provides the following:the ifFloat

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
http://docs.brightsign.biz/display/DOC/Variables%2C+Literals%2C+and+Types#Variables,Literals,andTypes-Types

GetFloat() As Float

Returns the float value of the object.

SetFloat(value As Float) As Void

Sets the float value of the object.

ifString

roString contains the interface, which provides the following: ifString

GetString() As String

Returns the string value of the object.

SetString(value As String) As Void

Sets the string value of the object.

ifStringOps

roString also contains the interface, which provides the following:ifStringOps

SetString(str As String, str_len As Integer)

Sets the string value of the object using the specified string and string-length values. This is similar to the method, which does not SetSeting()
accept a parameter for string length.

AppendString(str As String, str_len As Integer)

Appends to the string value of the object using the specified string and string-length values. This method modifies itself—this can cause
unexpected results when you pass an intrinsic string type, rather than a string object.

Example
x="string"
x.ifstringops.appendstring("ddd",3)
print x 'will print 'string'
y=box("string")
y.ifstringops.appendstring("ddd",3)
print y 'will print 'stringddd'

Len() As Integer

Returns the number of characters in a string.

GetEntityEncode() As String

Returns the string with certain characters replaced with HTML entity encoding sequences:

Character Replaced with

" (double quote) "

' (single quote) '

< <

Note

Some offer the same functionality as methods. The function indexes of methods start at zero, global functions ifStringOps ifStringOps
while those of global functions start at one.

> >

& &

Tokenize(delim As String) As roList

Splits a string into substrings using the specified delimiter character(s). The parameter can contain one or more characters to treat as delim
delimiters. If the string object contains multiple contiguous delimiters, they will be treated as a single delimiter. This method returns the substrings
as an object; the delimiters are not returned with the substrings.roList

Example
BrightScript> s = "one&&two"
BrightScript> print s.Tokenize("&")
one
two

Trim() As String

Returns the string with any leading and trailing whitespace characters (e.g. TAB, LF, CR, VT, FF, NO-BREAK SPACE) removed.

ToInt() As Integer

Returns the value of the string as an integer number.

ToFloat() As Float

Returns the value of the string as a floating point number.

Left(n As Integer) As String

Returns the first characters of the string.n

Right(n As Integer) As String

Returns the last characters of the string.n

Mid(start_index As Integer) As String

Returns a subset of the string that begins at the zero-based and terminates at the end of the string.start_index

Mid(start_index As Integer, n As Integer) As String

Returns a subset of the string, beginning at the zero-based and consisting of characters. If the string contains fewer than start_index n n
characters after the specified , this method will return all characters after the .start_index start_index

Instr(substring As String) As Integer

Returns the zero-based index of the first occurence of the substring in the string. If the substring does not occur in the string, this method returns
-1.

Instr(start_index As Integer, substring As String) As Integer

Returns the zero-based index of the first occurence of the substring after the specified in the string. If the substring does not occur start_index
after the specified , this method returns -1.start_index

Tip

Instr() is also offered as a (note that the string index of the global function starts at 1).global function

https://docs.brightsign.biz/display/DOC/Global+Functions#GlobalFunctions-instr()

Example
BrightScript> o=CreateObject("roInt")
BrightScript> o.SetInt(555)
BrightScript> print o
555
BrightScript> print o.GetInt()
555
BrightScript> print o-55
500

An integer value of 5 is converted to type automatically because the method expects a BrightScript object as its parameter:roInt AddTail()

Example
BrightScript> list=CreateObject("roList")
BrightScript> list.AddTail(5)
BrightScript> print type(list.GetTail())

Here the method returns an object containing objects:ListDir() roList roString

Example
BrightScript> l=ListDir("/")
BrightScript> for i=1 to l.Count():print l.RemoveHead():next
test_movie_3.vob
test_movie_4.vob
test_movie_1.vob
test_movie_2.vob

roJRE

This object allows you to load Java applications using the Java Runtime Environment (JRE) on the player. The JRE utilizes OpenJDK 7 and is
available on XTx43, XDx33, HDx23, LS423, and 4Kx42 models.

Object Creation

The object is instantiated with the Java package filename and an optional associative array that specifies JVM system properties and roJRE
program arguments. You can use the global function to determine if the package was successfully loaded.Type()

CreateObject("roJRE", filename As String, options As roAssociativeArray)

The associative array can contain two entries:

defines: An associative array specifying system properties.

arguments : An array specifying command-line arguments.

All property/argument values must be passed as strings. Note that associative-array keys are case insensitive (i.e. converted to all lowercase) by
default; use the method to enable case-sensitive keys.roAssociativeArray.SetModeCaseSensitive()

Example

props = {}
props.SetModeCaseSensitive()
props["SYS_PROP_1"] = "system prop 1"
props["SYS_PROP_2"] = "system prop 2"
props["java.io.tmpdir"] = "/var/tmp"

jre = CreateObject("roJRE", "app.jar", { defines: props, arguments: ["arg 1", "arg 2"] })
if type(jre)="roJRE" then
 print "Successfully started Java runtime"
else
 print "Unable to start Java runtime"
end if

roList

ON THIS PAGE

ifList
Count() As Integer
ResetIndex() As Boolean
AddTail(obj As Object) As Void
AddHead(obj As Object) As Void
RemoveIndex() As Object
GetIndex() As Object
RemoveTail() As Object
RemoveHead() As Object
GetTail() As Object
GetHead() As Object
Clear()

ifEnum
Reset()
Next() As Dynamic
IsNext() As Boolean
IsEmpty() As Boolean

ifArray
Peek() As Dynamic
Pop() As Dynamic
Push(entry As Dynamic)
Shift() As Dynamic
Unshift(entry As Dynamic)
Delete(index As Integer) As Boolean
Count() As Integer
Clear()
Append(list As roList)

ifArrayGet
GetEntry(a As Integer) As Dynamic

ifArraySet
SetEntry(a As Integer, b As Dynamic)

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object functions as a general-purpose, doubly linked list. It can be used as a container for arbitrary-length lists of BrightSign objects. The
array operator [] can be used to access any element in an ordered list.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifList

Count() As Integer

Returns the number of elements in the list.

ResetIndex() As Boolean

Resets the current index or position in the list to the head element.

AddTail(obj As Object) As Void

Adds a typed value to the tail of the list.

AddHead(obj As Object) As Void

Adds a typed value to the head of the list.

RemoveIndex() As Object

Removes an entry from the list at the current index or position and increments the index or position in the list. It returns Invalid when the end of
the list is reached.

GetIndex() As Object

Retrieves an entry from the list at the current index or position and increments the index or position in the list. It returns Invalid when the end of
the list is reached.

RemoveTail() As Object

Removes the entry at the tail of the list.

RemoveHead() As Object

Removes the entry at the head of the list.

GetTail() As Object

Retrieves the entry at the tail of the list and keeps the entry in the list.

GetHead() As Object

Retrieves the entry at the head of the list and keeps the entry in the list.

Clear()

Removes all elements from the list.

ifEnum

Reset()

Resets the position to the first element of enumeration.

Next() As Dynamic

Returns a typed value at the current position and increment position.

IsNext() As Boolean

Returns True if there is a next element.

IsEmpty() As Boolean

Returns True if there is not an exact statement.

ifArray

Peek() As Dynamic

Returns the last (highest index) list entry without removing it.

Pop() As Dynamic

Returns the last (highest index) entry and removes it from the list.

Push(entry As Dynamic)

Adds a new highest-index entry to the end of the list.

Shift() As Dynamic

Removes index zero from the list and shifts all other entries down by one unit.

Unshift(entry As Dynamic)

Adds a new index zero to the list and shifts all other entries up by one unit.

Delete(index As Integer) As Boolean

Deletes the indicated list entry and shifts all above entries down by one unit.

Count() As Integer

Returns the length of the list (i.e. the index of the highest entry in the list plus one).

Clear()

Deletes every entry in the list.

Append(list As roList)

Appends one to another. If the passed contains entries that were never set to a value, they are not appended.roList roList

ifArrayGet

GetEntry(a As Integer) As Dynamic

Returns a list entry of a given index. Entries start at zero. If an entry that has not been set is fetched, Invalid is returned.

ifArraySet

SetEntry(a As Integer, b As Dynamic)

Sets an entry of a given index to the passed type value.

Example
list = CreateObject("roList")
list.AddTail("a")
list.AddTail("b")
list.AddTail("c")
list.AddTail("d")
list.ResetIndex()

Note

The two appended objects must be of the same type.

x= list.GetIndex()
while x <> invalid
print x
x = list.GetIndex()
end while
print list[2]

roMessagePort

ON THIS PAGE

ifMessagePort
GetMessage() As Object
WaitMessage(timeout As Integer) As Object
PostMessage(msg As Object) As Void
PeekMessage() As Object
SetWatchdogTimeout(seconds As Integer) As Integer
DeferWatchdog(seconds As Integer)
DeferWatchdog()

ifEnum
Reset()
Next() As Dynamic
IsNext() As Boolean
IsEmpty() As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

A message port is the destination where messages (events) are sent. See the explanation of for more details. You do not call these Event Loops
functions directly when using BrightScript. Instead, use the .Wait() global function

ifMessagePort

GetMessage() As Object

Returns the event object if available. Otherwise, Invalid is returned. In either case, this method returns immediately without waiting.

WaitMessage(timeout As Integer) As Object

Waits until an event object is available or the specified amount of milliseconds have passed. When an event object becomes available, it will be
returned. If the timeout is reached, Invalid will be returned. Passing a zero timeout value instructs this method to wait indefinitely for a message.

You can also use the global function to retrieve event objects over a specified interval. The following two statements have the same Wait()
effect:

msg = port.WaitMessage(timeout)
msg = wait(timeout, port)

PostMessage(msg As Object) As Void

PeekMessage() As Object

Returns the event object if available (or Invalid if otherwise), but does not remove the event object from the message queue; a later call to GetMe
, , or will return the same event object. ssage() WaitMessage() PeekMessage()

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/display/DOC/Object+Reference#ObjectReference-Event_Loops

SetWatchdogTimeout(seconds As Integer) As Integer

Enables a watchdog timeout on the instance if passed a positive integer. The watchdog will crash and reboot the player if the roMessagePort
script does not call or after the specified number of seconds (the timeout is blocked while the script waits on GetMessage() WaitMessage()
the message port). Passing zero to this method disables the watchdog.

Some BrightScript operations (e.g.) can take a long time to return. In these cases, it may be better to use a short roAssetRealizer.Realize()
watchdog timeout in general but switch to a longer timeout before calling such operations.

The watchdog timeout only applies to its associated instance, so enabling the watchdog on one instance, then roMessagePort roMessagePort
calling on another, may cause the watchdog to trigger unexpectedly. The watchdog will not trigger while waiting on the WaitMessage()
BrightScript debugger prompt.

DeferWatchdog(seconds As Integer)

Defers the watchdog timeout set by the method. Passing an integer to this method defers the timeout for the specified SetWatchdogTimeout()
number of seconds.

DeferWatchdog()

Defers the watchdog timeout by the amount of seconds set in the method.SetWatchdogTimeout()

ifEnum

Reset()

Resets the position to the first element of enumeration.

Next() As Dynamic

Returns the typed value at the current position and increment position.

IsNext() As Boolean

Returns True if there is a next element.

IsEmpty() As Boolean

Returns True if there is not a next element.

roRegex

ON THIS PAGE

ifRegex
IsMatch(string As String) As Boolean
Match(string As String) As roArray
Replace(string As String, subset As String) As String
ReplaceAll(string As String, subset As String) As String
Split(string As String) As roList

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1

Note

Calls to either method cannot cause the watchdog to trigger earlier than it already will. For example, calling DeferWatchdog() Defer
 followed by will still cause the watchdog to trigger after 100 seconds.Watchdog(100) DeferWatchdog(10)

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript

Previous Versions

This object allows the implementation of the regular-expression processing provided by the PCRE library. This object is created with a string to
represent the matching-pattern and a string to indicate flags that modify the behavior of one or more matching operations:

CreateObject("roRegex", "[a-z]+", "i")

The match string (in the example above, , which matches all lowercase letters) can include most Perl compatible regular expressions "[a-z]+"
found in the . PCRE documentation

This object supports any combination of the following behavior flags (in the example above, "i", which can be modified to match both uppercase
and lowercase letters):

"i": Case-insensitive match mode.

"m": Multiline mode. The start-line ("^") and end-line ("$") constructs match immediately before or after any newline in the subject string.
They also match at the absolute beginning or end of a string.
"s": Dot-all mode, which includes a newline in the ".*" regular expression. This modifier is equivalent to "/s" in Perl.

"x": Extended mode, which ignores whitespace characters except when escaped or inside a character class. This modifier is equivalent
to "/x" in Perl.

ifRegex

IsMatch(string As String) As Boolean

Returns True if the string is consistent with the matching pattern.

Match(string As String) As roArray

Returns an of matched substrings from the string. The entire match is returned in the form .This will be the only entry in the roArray array[0]
array if there are no parenthetical substrings. If the matching pattern contains parenthetical substrings, the relevant substrings will be returned as
an array of length n+1, where is the entire match and each additional entry in the array is the match for the corresponding array[0]
parenthetical expression.

Replace(string As String, subset As String) As String

Replaces the first occurrence of a matching pattern in the string with the subset and returns the result.

The subset may contain numbered back-references to parenthetical substrings.

Example
 > r = CreateObject("roRegex", "(\d+)\s+(\w+)", "")
 > ? r.Replace("123 abc", "word:\2 number:\1")
 > word:abc number:123

ReplaceAll(string As String, subset As String) As String

Replaces the all occurrences of a matching pattern in the string with the subset and returns the result.

Example
 > r = CreateObject("roRegex", "a", "i")
 > ? r.ReplaceAll("Abracadabra", "x")
 xbrxcxdxbrx

Split(string As String) As roList

Uses the matching pattern as a delimiter and splits the string on the delimiter boundaries. The function returns an of strings that were roList
separated by the matching pattern in the original string.

http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
http://pcre.org/

roXMLElement

ON THIS PAGE

ifXMLElement
GetBody() As Object
GetAttributes() As Object
GetName() As String
GetText() As String
GetChildElements() As Object
GetNamedElements(a As String) As Object
GetNamedElementsCi(a As String) As Object
SetBody(a As Object)
AddBodyElement() As Object
AddElement(a As String) As Object
AddElementWithBody(a As String, b As Object) As Object
AddAttribute(a As String, b As String)
SetName(a As String)
Parse(a As String) As Boolean
GenXML(a As Object) As String
Clear() As Void
GenXMLHdr(a As String) As String
IsName(a As String) As Boolean
HasAttribute(a As String) As Boolean
ParseFile(a As String) As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is used to contain an XML tree.

The object is created with no parameters: roXMLElement

CreateObject("roXMLElement")

The following examples illustrate how XML elements are parsed in BrightScript:

<tag1>This is example text</tag1>

Name = tag1
Attributes = Invalid
Body = containing "This is example text"roString

<tag2 caveman="barney"/>

Name = tag2
Attributes = with one entry, roAssociativeArray {caveman, barney}

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Body = Invalid

If the tag contains other tags, the body will be of type .roXMLList

To generate XML content, create an and call the and methods to build it–then call the methoroXMLElement SetBody() SetName() GenXML()
d to generate it.

Example
root.SetName("myroot")
root.AddAttribute("key1","value1")
root.AddAttribute("key2","value2")
ne=root.AddBodyElement()
ne.SetName("sub")
ne.SetBody("this is the sub1 text")
ne=root.AddBodyElement()
ne.SetName("subelement2")
ne.SetBody("more sub text")
ne.AddAttribute("k","v")
ne=root.AddElement("subelement3")
ne.SetBody("more sub text 3")
root.AddElementWithBody("sub","another sub (#4)")
PrintXML(root, 0)
print root.GenXML(false)

ifXMLElement

GetBody() As Object

GetAttributes() As Object

GetName() As String

GetText() As String

GetChildElements() As Object

GetNamedElements(a As String) As Object

GetNamedElementsCi(a As String) As Object

SetBody(a As Object)

Generates an for the body if needed. The method then adds the passed item (which should be an tag).roXMLList roXMLElement

AddBodyElement() As Object

AddElement(a As String) As Object

AddElementWithBody(a As String, b As Object) As Object

AddAttribute(a As String, b As String)

SetName(a As String)

Parse(a As String) As Boolean

Parses the XML content passed to it. In the event of failure, this method returns False. However, it also populates with whatever roXMLElement
text could be successfully parsed. To avoid passing along erroneous strings, it is always best to have the script check the return value of Parse()
 before using them.

GenXML(a As Object) As String

Generates XML content. This method takes a single Boolean parameter, indicating whether or not the XML should have an tag at the <?xml …>
top.

Clear() As Void

GenXMLHdr(a As String) As String

IsName(a As String) As Boolean

HasAttribute(a As String) As Boolean

ParseFile(a As String) As Boolean

The following is an example subroutine to print out the contents of an tree:roXMLElement

PrintXML(root, 0)

Sub PrintXML(element As Object, depth As Integer)
 print tab(depth*3);"Name: ";element.GetName()
 if not element.GetAttributes().IsEmpty() then
 print tab(depth*3);"Attributes: ";
 for each a in element.GetAttributes()
 print a;"=";left(element.GetAttributes()[a], 20);
 if element.GetAttributes().IsNext() then print ", ";
 end for
 print
 end if
 if element.GetText()<>invalid then
 print tab(depth*3);"Contains Text: ";left(element.GetText(), 40)
 end if
 if element.GetChildElements()<>invalid
 print tab(depth*3);"Contains roXMLList:"
 for each e in element.GetChildElements()
 PrintXML(e, depth+1)
 end for
 end if
 print
end sub

roXMLList

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

ON THIS PAGE

ifXMLList
Simplify() As Object
GetAttributes() As Object
GetText() As String
GetChildElements() As Object
GetNamedElements(a As String) As Object
GetNamedElementsCi(a As String) As Object

ifList
Count() As Integer
ResetIndex() As Boolean
AddTail(obj As Object) As Void
AddHead(obj As Object) As Void
RemoveIndex() As Object
GetIndex() As Object
RemoveTail() As Object
RemoveHead() As Object
GetTail() As Object
GetHead() As Object
Clear() As Void

ifEnum
Reset()
Next() As Dynamic
IsNext() As Boolean
IsEmpty() As Boolean

ifArray
Peek() As Dynamic
Pop() As Dynamic
Push(a As Dynamic)
Shift() As Dynamic
Unshift(a As Dynamic)
Delete(a As Integer) As Boolean
Count() As Integer
Clear() As Void
Append(a As Object) As Void

ifArrayGet
GetEntry(a As Integer) As Dynamic

ifArraySet
SetEntry(a As Integer, b As Dynamic) As Void

ifXMLList

Simplify() As Object

Returns an if the list contains exactly one element. Otherwise, it will return itself.roXmlElement

GetAttributes() As Object

GetText() As String

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

GetChildElements() As Object

GetNamedElements(a As String) As Object

Returns a new XMLList that contains all that match the name of the passed element. This action is the same as using the dot roXmlElements
operator on an .roXmlList

GetNamedElementsCi(a As String) As Object

ifList

Count() As Integer

Returns the number of elements in the list.

ResetIndex() As Boolean

Resets the current index or position in the list to the head element.

AddTail(obj As Object) As Void

Adds a typed value to the tail of the list.

AddHead(obj As Object) As Void

Adds a typed value to the head of the list.

RemoveIndex() As Object

Removes an entry from the list at the current index or position and increments the index or position in the list. It returns Invalid when the end of
the list is reached.

GetIndex() As Object

Retrieves an entry from the list at the current index or position and increments the index or position in the list. It returns Invalid when the end of
the list is reached.

RemoveTail() As Object

Removes the entry at the tail of the list.

RemoveHead() As Object

Removes the entry at the head of the list.

GetTail() As Object

Retrieves the entry at the tail of the list and keeps the entry in the list.

GetHead() As Object

Retrieves the entry at the head of the list and keeps the entry in the list.

Clear() As Void

Removes all elements from the list.

ifEnum

Reset()

Resets the position to the first element of enumeration.

Next() As Dynamic

Returns a typed value at the current position and increment position.

IsNext() As Boolean

Returns True if there is a next element.

IsEmpty() As Boolean

Returns True if there is not an exact statement.

ifArray

Peek() As Dynamic

Returns the last (highest index) array entry without removing it.

Pop() As Dynamic

Returns the last (highest index) entry and removes it from the array.

Push(a As Dynamic)

Adds a new highest index entry to the end of the array.

Shift() As Dynamic

Removes index zero from the array and shifts all other entries down by one unit.

Unshift(a As Dynamic)

Adds a new index zero to the array and shifts all other entries up by one unit.

Delete(a As Integer) As Boolean

Deletes the indicated array entry and shifts all above entries down by one unit.

Count() As Integer

Returns the index of the highest entry in the array plus one (i.e. the length of the array).

Clear() As Void

Deletes every entry in the array.

Append(a As Object) As Void

Appends one to another. If the passed contains entries that were never set to a value, they are not appended.roArray roArray

ifArrayGet

GetEntry(a As Integer) As Dynamic

Returns an array entry of a given index. Entries start at zero. If an entry that has not been set is fetched, Invalid is returned.

ifArraySet

SetEntry(a As Integer, b As Dynamic) As Void

Sets an entry of a given index to the passed type value.
Presentation and Widget Objects

Firmware Version 7.0

Note

The two appended objects must be of the same type.

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This section describes objects that relate directly to audio/video playback on BrightSign players.

roAudioConfiguration
roAudioOutput
roAudioPlayer
roAudioPlayerMx
roAudioEventMx
roCanvasWidget
roClockWidget
roHdmiInputChanged, roHdmiOutputChanged
roHtmlWidget
roHtmlWidgetEvent
roImageBuffer
roImagePlayer
roImageWidget
roRectangle
roStreamQueue
roTextField
roTextWidget
roTextWidgetEvent
roTouchScreen
roTouchEvent, roTouchCalibrationEvent
roVideoEvent, roAudioEvent
roVideoInput
roVideoMode
roVideoPlayer

roAudioConfiguration

ON THIS PAGE

ifAudioConfiguration
ConfigureAudio(audio_routing As roAssociativeArray) As Boolean
GetConfiguration() As roAssociativeArray
GetClockStatus() As roAssociativeArray

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object allows for mixing and leveling of audio streams before they are passed to audio outputs.

Object Creation: The object is created with no parameters.roAudioConfiguration

CreateObject("roAudioConfiguration")

ifAudioConfiguration

ConfigureAudio(audio_routing As roAssociativeArray) As Boolean

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Configures the audio routing. This method will fail if called when audio resources are in use (i.e. there are active or iroVideoPlayer roAudioPlayer
nstances). It returns on success and on failure. The passed associative array can have the following parameters:true false

[string] mode: Sets the audio routing mode:

"dynamic": The default mode. Mixing audio streams with differing sampling rates will cause playback to fail; differing volume
levels will not be normalized; and audio streams cannot be added to an output that currently has audio playing on it. Other
parameters in the associative array are ignored.
"prerouted": This setting was implemented in firmware 7.0. You can add and remove audio streams on an output that
currently has audio playing on it; additional audio routing behavior is determined with the , , and autolevel pcmonly srcrate
parameters.

autolevel[string] : Enables () or disables () volume leveling for audio outputs in the audio mode. When "on" "off" "prerouted"
this setting is enabled, all PCM audio streams on a particular output will play at a similar volume.

pcmonly[string] : Enables () or disables () compressed audio support in the audio mode."true" "false" "prerouted"

[int] srcrate: Sets the sample rate to which all PCM audio streams are converted in the the audio mode. This value "prerouted"
can be either 44100 or 48000.

GetConfiguration() As roAssociativeArray

Returns audio configuration information as an associative array:

[string] mode: The audio routing mode (or)"dynamic" "prerouted"

[int] decoder_count: The number of available decoders

[int] compressed_capable_count: The number of decoders that can route compressed audio

[Boolean] autolevel: A flag indicating whether the volume leveling setting is enabled

[Boolean] pcmonly: A flag indicating whether the compressed audio support setting is enabled

[int] srcrate: The sample rate to which all PCM audio streams are converted

GetClockStatus() As roAssociativeArray

Returns audio clock information about the , , and outputs.I2C Spdif Hdmi

roAudioOutput

ON THIS PAGE

ifAudioOutput
SetVolume(a As Integer) As Boolean
SetTone(treble As Integer, bass As Integer) As Boolean
SetMute(a As Boolean) As Boolean
GetOutput() As String
SetAudioDelay(delay_in_milliseconds As Integer) As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object allows individual control of audio outputs on the player.

Object Creation: The object requires a single output parameter upon creation.roAudioOutput

CreateObject("roAudioOutput", output As String)

Note

If the mode is , the associative array will contain the and parameter only."dynamic" mode decoder_count

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

The parameter can take the following strings:output

“none”

“hdmi”

“usb”

“spdif”

"analog"

“analog:N” (N specifies the port enumeration, which is useful for models with multiple analog-audio ports; you can also use "analog:
 to specify the analog output on a model with a single analog-audio port)1"

You can create any number of objects. There can be multiple instances of this object that represent the same audio output, but in roAudioOutput
these cases one object will override another.

ifAudioOutput

SetVolume(a As Integer) As Boolean

Sets the volume of the specified output as a percentage represented by an integer between 0 and 100.

SetTone(treble As Integer, bass As Integer) As Boolean

Sets the treble and bass of the specified output. The treble and bass integers can range from -1000 to 1000, with 0 indicating no modification to
the audio signal. Each increment represents a change of 0.01db.

SetMute(a As Boolean) As Boolean

Mutes the specified output if True. This method is set to False by default.

GetOutput() As String

Returns the string with which the object was created.roAudioOutput

SetAudioDelay(delay_in_milliseconds As Integer) As Boolean

Delays the audio for a specific audio output by lagging decoded samples before they reach that output. Delays are limited to 150ms or less.
Currently, the system software only supports positive delays; therefore, if you need to set the audio ahead of the video, you will need to use roVid

 instead.eoPlayer.SetVideoDelay()

The and methods work in conjunction with the volume and mute functionality offered by . The SetVolume() SetMute() roAudioPlayer roAudioPl
volume settings affect the audio decoder volume. The audio stream is then sent to the assigned outputs, which have an additional level of ayer

volume control enabled by .roAudioOutput

The object affects the absolute volume (as well as mute settings) for an audio output. If two players are streaming to the same roAudioOutput
output, both will be affected by any settings implemented through .roAudioOutput

roAudioPlayer

ON THIS PAGE

ifMessagePort
SetPort(port As roMessagePort) As Void

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

IfIdentity
GetIdentity() As Integer

ifMediaTransport

Note

To control which audio outputs connect to audio player outputs generated by , use the SetPcmAudioOutputs()roAudioOutput
 and SetCompressedAudioOutputs() methods, which can be used for and . See the entry roVideoPlayer roAudioPlayer roAudioPlayer
for further explanation of these methods.

ifAudioControl
SetPcmAudioOutputs(outputs As roArray) As Boolean
SetCompressedAudioOutputs(outputs As roArray) As Boolean
SetMultichannelAudioOutputs(array As Object) As Boolean
SetAudioOutput(audio_output As Integer) As Boolean
SetAudioMode(audio_mode As Integer) As Boolean
MapStereoOutput(mapping As Integer) As Boolean
MapDigitalOutput(mapping As Integer) As Boolean
SetVolume(volume As Dynamic) As Boolean
SetChannelVolumes(channel_mask As Integer, volume As Integer) As Boolean
SetPreferredAudio(description As String) As Boolean
SetUsbAudioPort(a As Integer) As Boolean
SetSpdifMute(a As Boolean) As Boolean

SetStereoMappingSpan(a As Integer) As Boolean
ConfigureAudioResources() As Boolean
SetAudioStream(stream_index As Integer) As Boolean
SetAudioDelay(delay_in_milliseconds As Integer) As Boolean
SetVideoDelay(delay_in_milliseconds As Integer) As Boolean
StoreEncryptionKey(a As String, b As String) As Boolean
StoreObfuscatedEncryptionKey(a As String, b As String) As Boolean
SetAudioOutputAux(audio_output As Integer) As Boolean
SetAudioModeAux(audio_mode As Integer) As Boolean
MapStereoOutputAux(mapping As Integer) As BooleanSetVolumeAux(volume As Integer) As Boolean
SetChannelVolumesAux(channel_mask As Integer, volume As Integer) As Boolean
SetAudioStreamAux(stream_index As Integer) As Boolean

Configuring Audio Outputs
Playing Multiple Audio Files Simultaneously

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

An audio player is used to play back audio files using the generic interface. If the message port is set, the object will send ifMediaTransport
events of the type . All object calls are asynchronous. In other words, audio playback is handled in a different thread from the script. roAudioEvent
The script may continue to run while audio is playing.

ifMessagePort

SetPort(port As roMessagePort) As Void

Posts messages of type to the attached message port.roAudioEvent

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via SetUserData(). It will return Invalid if no data has been set.

IfIdentity

GetIdentity() As Integer

Note

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifMediaTransport

See for a description of methods.roVideoPlayer ifMediaTransport

ifAudioControl

SetPcmAudioOutputs(outputs As roArray) As Boolean

Specifies which audio connectors should output PCM audio. This method accepts one or more outputs in the form of an of roArray roAudioOutput
instances.

SetCompressedAudioOutputs(outputs As roArray) As Boolean

Specifies which audio connectors should output compressed audio (e.g. Dolby AC3 encoded audio). This method accepts one or more outputs in
the form of an of instances. roArray roAudioOutput When one or both of the above output methods are called, they will override the settings of the
following ifAudioControl methods: .SetAudioOutput(), MapStereoOutput(), SetUsbAudioPort(), MapDigitalOutput()

SetMultichannelAudioOutputs(array As Object) As Boolean

SetAudioOutput(audio_output As Integer) As Boolean

Configures the audio output of the object. This method accepts the following values:roAudioPlayer

: Analog audio 0

: USB audio 1

: Digital audio, stereo PCM2

: Digital audio, raw AC33

: Onboard analog audio with HDMI mirroring raw AC34

SetAudioMode(audio_mode As Integer) As Boolean

Sets the audio mode of the object. This method accepts the following values:roAudioPlayer

0: AC3 Surround

1: AC3 mixed down to stereo

2: No audio

3: Left

4: Right

MapStereoOutput(mapping As Integer) As Boolean

Determines which output to use when the output is set to the analog audio (i.e.).SetAudioOutput(0)

0: Stereo audio is mapped to onboard analog output.

1: Stereo audio is mapped to left output of the expansion module.

2: Stereo audio is mapped to middle output of the expansion module.

3: Stereo audio is mapped to right output of the expansion module.

MapDigitalOutput(mapping As Integer) As Boolean

Maps the digital audio output from the object. This method accepts the following values:roAudioPlayer

0: Onboard HDMI

1: SPDIF from expansion module

The interface has been deprecated. We recommend using the interface instead.ifIdentity ifUserData

Note

Options 0 and 1 only apply to video files, while options 2, 3, and 4 apply to all audio sources.

SetVolume(volume As Dynamic) As Boolean

Specifies the volume of the audio output as either a percentage or decibel amount. To use a percentage measurement, pass an integer value
between 0 and 100. To use a decibel measurement, pass an containing a single } parameter. The roAssociativeArray {db:<value As Float>
decibel measurement is an absolute value: passing 0 specifies no change to the audio output, and the effective range of measurements is from
approximately -80 to 20 decibels.

The volume value is clipped prior to use (i.e. will set the volume to 100 and return True). The volume is the same for all SetVoume(101)
mapped outputs and USB/SPDIF/analog.

SetChannelVolumes(channel_mask As Integer, volume As Integer) As Boolean

You can control the volume of individual audio channels. This volume command takes a hex channel mask, which determines the channels to
apply the volume to, and a level, which is a percentage of the full scale. The volume control works according to audio channel rather than the
output. The channel mask is a bit mask with the following bits for MP3 output:

&H01: Left

&H02: Right

&H03: Both left and right

SetPreferredAudio(description As String) As Boolean

Selects which audio track to use if there are multiple audio tracks in the stream. See the section on the page Preferred Streams roVideoPlayer
for more details.

SetUsbAudioPort(a As Integer) As Boolean

SetSpdifMute(a As Boolean) As Boolean

SetStereoMappingSpan(a As Integer) As Boolean

ConfigureAudioResources() As Boolean

SetAudioStream(stream_index As Integer) As Boolean

SetAudioDelay(delay_in_milliseconds As Integer) As Boolean

Adds a presentation time stamp (PTS) offset to the audio. This makes it possible to adjust for file multiplexing differences. Delays are limited to
150ms or less. Currently, the system software only supports positive delays; therefore, if you need to set the audio ahead of the video, you will
need to use instead.SetVideoDelay()

SetVideoDelay(delay_in_milliseconds As Integer) As Boolean

Adds a presentation time stamp (PTS) offset to the video. This makes it possible to adjust for file multiplexing differences. Delays are limited to
150ms or less.

StoreEncryptionKey(a As String, b As String) As Boolean

StoreObfuscatedEncryptionKey(a As String, b As String) As Boolean

HD2000 Only:

SetAudioOutputAux(audio_output As Integer) As Boolean

Separate volume levels are stored for and .roAudioPlayer roVideoPlayer

https://docs.brightsign.biz/display/DOC/roVideoPlayer#roVideoPlayer-preferred_streams

SetAudioModeAux(audio_mode As Integer) As Boolean

MapStereoOutputAux(mapping As Integer) As BooleanSetVolumeAux(volume As Integer) As Boolean

SetChannelVolumesAux(channel_mask As Integer, volume As Integer) As Boolean

SetAudioStreamAux(stream_index As Integer) As Boolean

Configuring Audio Outputs

If a audio/video file is playing or has played, you need to call before changing the audio output.Stop()

The following script shows how to use the and methods in conjunction with SetPcmAudioOutputs() SetCompressedAudioOutputs() roAu
. The audio/video player is configured to output decoded audio to the analog output or compressed audio to the HDMI and SPDIF dioOutput

outputs.

ao1=CreateObject("roAudioOutput", "Analog")
ao2=CreateObject("roAudioOutput", "HDMI")
ao3=CreateObject("roAudioOutput", "SPDIF")

a1=CreateObject("roAudioPlayer")
a1.SetPcmAudioOutputs(ao1)

ar = CreateObject("roArray", 2, true)
ar[0] = ao2
ar[1] = ao3
a1.SetCompressedAudioOutputs(ar)

This code sets audio output to the rightmost expansion module audio port:

video = CreateObject("roVideoPlayer")
video.SetAudioOutput(0)
video.MapStereoOutput(3)

This code sets the volume level for individual channels:

audio = CreateObject("roAudioPlayer")
audio.SetChannelVolumes(&H01, 60) 'left channel to 60%
audio.SetChannelVolumes(&H02, 75) 'right channel to 75%
audio.SetChannelVolumes(&H03, 65) 'all channels to 65%

Playing Multiple Audio Files Simultaneously

Multiple MP3 files, as well as the audio track of a video file, can be played to any combination of the following:

Analog outputs
SPDIF / HDMI

Important

In most cases, rerouting audio outputs during audio/video playback will cause playback to stop. The system software will still be
responsive, so you can use commands to exit playback during or after an audio output modification.

USB

Only a single file can be sent to an output at any given time. For example, two cannot simultaneously play to the SPDIF output. roAudioPlayers
The second one to attempt a will get an error. To free an output, the audio or video stream must be stopped (using the PlayFile ifMediaTransport

 or calls).Stop StopClear

Note the following about multiple audio-file functionality:

The onboard analog audio output and HDMI output are clocked by the same sample-rate clock. Therefore, if different content is being
played out of each, the content must have the same sample rate.

Currently, only a single set of USB speakers is supported.
Each audio and video stream played consumes some of the finite CPU resources. The amount consumed depends on the bitrates of the
streams. Testing is the only way to determine whether a given set of audio files can be played at the same time as a video. The
maximum recommended usage is a 16Mbps video file with three simultaneous MP3 160kbps streams.

This code plays a video with audio over HDMI and an MP3 file to the onboard analog port.

video=CreateObject("roVideoPlayer")

video.SetAudioOutput(3)
video.PlayFile("video.mpg")

audio=CreateObject("roAudioPlayer")

audio.MapStereoOutput(0)
audio.PlayFile("audio.mp3")

roAudioPlayerMx

ON THIS PAGE

ifMediaTransport
PlayFile(a As Object) As Boolean
Stop() As Boolean
Play() As Boolean
Pause() As Boolean
Resume() As Boolean
SetLoopMode(a As Boolean) As Boolean
GetPlaybackStatus() As Object

ifAudioControl
MapStereoOutput(a As Integer) As Boolean
SetVolume(a As Integer) As Boolean
SetChannelVolumes(a As Integer, b As Integer) As Boolean
SetAudioOutput(a As Integer) As Boolean
SetAudioMode(a As Integer) As Boolean
SetAudioStream(a As Integer) As Boolean
SetUsbAudioPort(a As Integer) As Boolean
SetSpdifMute(a As Boolean) As Boolean
MapDigitalOutput(a As Integer) As Boolean
StoreEncryptionKey(a As String, b As String) As Boolean
StoreObfuscatedEncryptionKey(a As String, b As String) As Boolean
SetStereoMappingSpan(a As Integer) As Boolean
ConfigureAudioResources() As Boolean
SetPcmAudioOutputs(a As Object) As Boolean
SetCompressedAudioOutputs(a As Object) As Boolean

ifSetMessagePort
SetPort(a As Object)

ifUserData
SetUserData(user_data As Object)

GetUserData() As Object
ifIdentity

GetIdentity() As Integer
ifAudioControlMx

SetDecoderCount(a As Integer) As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object allows you to mix audio files, as well as HLS audio streams. Each roAudioPlayerMx object contains two internal audio players: The
main audio playlist consists of queued audio tracks that play sequentially, while the audio overlay plays files on top of the main playlist. A fade will
not occur if it is called while an overlay is playing, but the next audio track will start playing as expected.

Tracks are queued to PlayFile with their fade parameters specified in an . These are the parameters you can pass to PlayFile:associative array

Filename: The filename of the track

FrontPorch: The length (in milliseconds) to skip from the start of the track. This value is 0 by default.

FadeOutLocation: The location (in milliseconds) of the fade out relative to the value of the FrontPorch. If the FrontPorch value is 0
(which is the default setting), and the FadeOutLength value is non-zero, then the fade out is calculated back from the end of the file.
FadeOutLength: The length of the fade out (in milliseconds). This value is 0 by default.

SegueLocation: The location (in milliseconds) of the event that triggers the next audio file to play. This location is relative to the first
audio file that is played. If the SegueLocation parameter is not included, the value defaults to the FadeOutLocation.
BackPorchLocation: The location (in milliseconds) of the termination point for the audio track. This location is relative to the first audio
file that is played. If the BackPorchLocation parameter is not included, the audio file plays to the end. The value is 0 by default, which
disables the back porch.
TrackVolume: The relative volume of of the audio track, measured as a percentage. Specify the percentage using values between 0
and 100.
EventID: The ID for an audio event.

EventTimeStamp: The timestamp for the audio event. There can only be one event per audio file.

QueueNext: The queuing of an audio track. Set the parameter value to 1 to queue an audio file to play after the current track.

Overlay: The overlay specification of an audio track. Set the parameter value to 1 to fade down the main audio playlist while playing the
audio track as an overaly. Overlays have additional parameters:

AudioBedLevel: The volume-level percentage of the main audio playlist while the overlay is playing. Specify the percentage
using values between 0 and 100.
AudioBedFadeOutLength: The fade-out length of the main audio playlist.

AudioBedFadeInLength: The fade-in lenth for the length of the underlying audio track once the segue is triggered.

FadeCurrentPlayNext: A fade command. Set the parameter value to 1 to fade out the current main audio playlist track and fade in
the designated audio file.
CrossfadeCurrentPlayNext: A crossfade command. Set the parameter value to 1 to force an immediate crossfade between the
current main audio playlist track and the designated audio file.
UserString: A string that can be set to a unique value for each instance. This string is returned with every event roAudioPlayerMx
generated by the instance. Since all current platforms can support multiple instances running at the same time, the roAudioPlayerMx
UserString allows the script to distinguish between event returns.

The following diagram illustrates how some of these timing parameters work together:

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

The following script illustrates a simple crossfade between audio tracks:

a = CreateObject("roAudioPlayerMx")

track1 = CreateObject("roAssociativeArray")
track1["Filename"] = "file1.mp3"
track1["FadeInLength"] = 4000
track1["FadeOutLength"] = 4000
track1["QueueNext"] = 1

track2 = CreateObject("roAssociativeArray")
track2["Filename"] = "file2.mp3"
track2["FadeInLength"] = 4000
track2["FadeOutLength"] = 4000
track2["QueueNext"] = 1

a.PlayFile(track1)
a.PlayFile(track2)

ifMediaTransport

PlayFile(a As Object) As Boolean

Stop() As Boolean

Play() As Boolean

Pause() As Boolean

Resume() As Boolean

SetLoopMode(a As Boolean) As Boolean

GetPlaybackStatus() As Object

ifAudioControl

MapStereoOutput(a As Integer) As Boolean

SetVolume(a As Integer) As Boolean

SetChannelVolumes(a As Integer, b As Integer) As Boolean

SetAudioOutput(a As Integer) As Boolean

SetAudioMode(a As Integer) As Boolean

SetAudioStream(a As Integer) As Boolean

SetUsbAudioPort(a As Integer) As Boolean

SetSpdifMute(a As Boolean) As Boolean

MapDigitalOutput(a As Integer) As Boolean

StoreEncryptionKey(a As String, b As String) As Boolean

StoreObfuscatedEncryptionKey(a As String, b As String) As Boolean

SetStereoMappingSpan(a As Integer) As Boolean

ConfigureAudioResources() As Boolean

SetPcmAudioOutputs(a As Object) As Boolean

SetCompressedAudioOutputs(a As Object) As Boolean

ifSetMessagePort

SetPort(a As Object)

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifIdentity

GetIdentity() As Integer

ifAudioControlMx

SetDecoderCount(a As Integer) As Boolean

roAudioEventMx

ON THIS PAGE

ifInt
GetInt() As Integer
SetInt(value As Integer) As Void

ifAudioUserData
SetUserData(user_data As String)
GetUserData() As String

Note

The interface has been deprecated. We recommend using the interface instead.ifIdentity ifUserData

ifSourceIdentity
GetSourceIdentity() As Integer
SetSourceIdentity() As Integer

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

The object can generate messages with the following values:roAudioPlayerMx roAudioEventMx

8 EVENT_MEDIAENDED
14 EVENT_OVERLAY_MEDIAENDED
16 EVENT_MEDIAERROR
17 EVENT_OVERLAY_MEDIAERROR

"Media ended" events are sent when a track finishes and there are no more queued tracks for the player, while "Media error" events are sent
when a queued file is not found (e.g. when it does not exist).

ifInt

GetInt() As Integer

Returns the event ID.

SetInt(value As Integer) As Void

Sets the value of the event.

ifAudioUserData

SetUserData(user_data As String)

Sets the user data.

GetUserData() As String

Returns the user data that has previously been set via (either on the source or event object). It will return Invalid if no data has SetUserData()
been set.

ifSourceIdentity

GetSourceIdentity() As Integer

SetSourceIdentity() As Integer

roCanvasWidget

ON THIS PAGE

ifCanvasWidget
Hide() As Boolean
Show() As Boolean

Note

The interface has been deprecated. We recommend using the interface instead.ifSourceIdentity ifAudioUserData

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

SetRectangle(r As roRectangle) As Boolean
SetLayer(content As Object, z-level As Integer) As Boolean
ClearLayer(z-level As Integer) As Boolean
Clear() As Boolean
EnableAutoRedraw(enable As Boolean) As Boolean

Object Content
Background color
Text
Image
QR Codes

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object composites background color, text, and images into a single rectangle, allowing you to layer images on a z-axis.

Object Creation: Like other widgets, is created with an to set its size and position on the screen.roCanvasWidget roRectangle

CreateObject ("roCanvasWidget", r As roRectangle) As Object

ifCanvasWidget

Hide() As Boolean

Hides the widget.

Show() As Boolean

Shows the widget.

SetRectangle(r As roRectangle) As Boolean

Changes the size and positioning of the widget rectangle using the passed object.roRectangle

SetLayer(content As Object, z-level As Integer) As Boolean

Sets the contents of a layer within the widget. The lowest z-level is drawn first, and the highest z-level is drawn last. The object content is
described below.

ClearLayer(z-level As Integer) As Boolean

Clears the specified layer.

Clear() As Boolean

Clears all of the layers.

EnableAutoRedraw(enable As Boolean) As Boolean

Enables or disables the automatic redrawing of the widget.

When this function is enabled, each call to SetLayer, ClearLayer, or Clear results in a redraw. If you need to change multiple layers, then
you should disable auto redraw while calling the SetLayer function.
SetLayer enables or disables redrawing of the widget when layer content is changed. When auto-redraw is enabled, each call to
SetLayer, ClearLayer, or Clear results in a redraw. To batch multiple updates together, you should first suspend drawing using
EnableAutoRedraw(false), then make the changes to the content, and finally re-enable drawing using EnableAutoRedraw(true). The
redraw happens in a separate thread, so EnableAutoRedraw returns almost immediately.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Object Content

The content specified in each layer can consist of one or more objects. Each object is defined by an . If there is more than one roAssociativeArray
object, then each is placed into an prior to passing to the method. Currently, there are four object types. roArray SetLayer()

Background color

color: The #[aa]rrggbb hex value of the background color

targetRect: A target rectangle, which is another consisting of x, y, w, and h values. These values are relative to the roAssociativeArray
top left corner of the widget.

Text

text: A string of text to display

targetRect: The rectangle in which the text is displayed

textAttrs: An containing attributes to be applied to the text. The attributes can be any of the following:roAssociativeArray
font: A string indicating whether the text should be displayed as "small"/"medium"/"large"/"huge"

fontSize: A point size that is used directly when creating the font. If the value is set to 0, then the font automatically resizes to
fit the targetRect.
fontfile: The filename for a non-system font to use

hAlign: A string indicating the "left"/"center"/"right" alignment of the text on a line

vAlign: A string indicating the "top"/"center"/"bottom" alignment of the text perpendicular to the line

rotation: A string indicating the "0"/'90"/"180"/"270" degree rotation of the text

color: The #[aa]rrggbb hex value of the text

Image

filename: The filename of the image

encryptionalgorithm: The file-encryption algorithm. Currently the options are "AesCtr" and "AesCtrHmac".

encryptionkey: The key to decrypt the image file. This is a byte array consisting of 128 bits of key, followed by 128 bits of IV.

targetRect: The rectangle in which the image is displayed. The image will be automatically resized to fit into the target area.

sourceRect: The source rectangle to clip from a source image

compositionMode: Enter either source or source_over. The latter alpha blends with underlying objects. The former replaces the
underlying values completely.
imgAttrs: An containing attributes to be applied to the image:roAssociativeArray

rotation: A string indicating the "0"/'90"/"180"/"270" degree rotation of the image

QR Codes

QR (quick response) codes appear as squares of black dots on a white background. They are used to encode URLs, email addresses, etc, and
they can be scanned using readily available software for smart phones. Although the codes usually appear as black on white, you can, in theory,
use any two contrasting colors.

targetRect: The rectangle in which the QR code is displayed. Regardless of the aspect ratio of this rectangle, the QR code itself will
always be squared with the background color that fills the gaps.

QrCode (simple form): Contains the string to encode into the QR code.

QrCode (complex form): Contains an array of parameters for the QR code. The parameters can be any of the following:

color: The foreground color in the QR code (the default is black)

backgroundColor: The background color in the QR code (the default is white)

rotation: A string indicating the "0"/'90"/"180"/"270" degree rotation of the code. The code will scan regardless of rotation.

qrText: Contains the text to encode into the QR code.

This code contains most of the features outlined above:roCanvasWidget

Note

See the section in the entry for details on displaying encrypted images.Image Decryption roImagePlayer

https://docs.brightsign.biz/display/DOC/roImagePlayer#roImagePlayer-image_decryption

rect=CreateObject("roRectangle", 0, 0, 1920, 1080)
cw=CreateObject("roCanvasWidget", rect)

aa=CreateObject("roAssociativeArray")
aa["text"] = "Primal Scream"
aa["targetRect"] = { x: 280, y: 180, w: 500, h: 30 }
aa["textAttrs"] = { Color:"#AAAAAA", font:"Medium", HAlign:"Left", VAlign:"Top"}

aa1=CreateObject("roAssociativeArray")
aa1["text"] = "Movin' on up, followed by something else, followed by something else, followed
by something else, followed by something else"
aa1["targetRect"] = { x: 282, y: 215, w: 80, h: 500 }
aa1["textAttrs"] = { Color:"#ffffff", font:"Large", fontfile:"usb1:/GiddyupStd.otf", HAlign:"
Left", VAlign:"Top", rotation:"90"}

array=CreateObject("roArray", 10, false)
array.Push({ color: "5c5d5f" })
array.Push({ filename: "transparent-balls.png" })
array.Push(aa)

aa2=CreateObject("roAssociativeArray")
aa2["filename"] = "transparent-balls.png"
aa2["CompositionMode"] = "source_over"
aa2["targetRect"] = { x: 400, y: 200, w: 200, h: 200 }

aa3=CreateObject("roAssociativeArray")
aa3["QrCode"] = "www.brightsign.biz"
aa3["targetRect"] = { x: 100, y: 100, w: 400, h: 400 }

aa4=CreateObject("roAssociativeArray")
aa4["QrCode"] = { qrText:"www.brightsign.biz", rotation:"90" }
aa4["targetRect"] = { x: 1200, y: 100, w: 400, h: 600 }

aa5=CreateObject("roAssociativeArray")
aa5["QrCode"] = { color:"#964969", backgroundColor:"#FFFF77", qrText:"www.brightsign.biz",
rotation:"180" }
aa5["targetRect"] = { x: 100, y: 600, w: 400, h: 400 }

cw.Show()
cw.EnableAutoRedraw(0)
cw.SetLayer(array, 0)
cw.SetLayer(aa1, 1)
cw.SetLayer(aa1, 2)
cw.SetLayer(aa3, 3)
cw.SetLayer(aa4, 4)
cw.SetLayer(aa5, 5)
cw.EnableAutoRedraw(1)

cw.ClearLayer(0)

roClockWidget

ON THIS PAGE

Control Characters
ifWidget

SetForegroundColor(color As Integer) As Boolean
SetBackgroundColor(color As Integer) As Boolean
SetFont(font_filename As String) As Boolean
SetBackgroundBitmap(bitmap_filename As String, stretch As Boolean) As Boolean
SetBackgroundBitmap(parameters As roAssociativeArray, stretch As Boolean) As Boolean
SetSafeTextRegion(region As roRectangle) As Boolean
Show() As Boolean

Hide() As Boolean
GetFailureReason() As String
SetRectangle(r As roRectangle) As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object places a clock on the screen. It has construction arguments only.

Object Creation: The object is created with several parameters.roClockWidget

CreateObject("roClockWidget", rect As roRectangle, res As roResourceManager, display_type As
Integer)

rect: The rectangle in which the clock is displayed. The widget picks a font based on the size of the rectangle.

res: A file that allows localization via the object (see below for further details).resources.txt roResourceManager
display_type: Use 0 for date only, and 1 for clock only. To show both on the screen, you need to create two widgets.

Example
rect=CreateObject("roRectangle", 0, 0, 300, 60)
res=CreateObject("roResourceManager", "resources.txt")
c=CreateObject("roClockWidget", rect, res, 1)
c.Show()

The resource manager is passed into the widget, which uses the following resources within the file to display the time and date resources.txt
correctly. Here are the "eng" entries:

[CLOCK_DATE_FORMAT]
eng "%A, %B %e, %Y"
[CLOCK_TIME_FORMAT]
eng "%l:%M"
[CLOCK_TIME_AM]
eng "AM"
[CLOCK_TIME_PM]
eng "PM"
[CLOCK_DATE_SHORT_MONTH]
eng "Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec"
[CLOCK_DATE_LONG_MONTH]
eng
"January|February|March|April|May|June|July|August|September|October|November|December"
[CLOCK_DATE_SHORT_DAY]
eng "Sun|Mon|Tue|Wed|Thu|Fri|Sat"
[CLOCK_DATE_LONG_DAY]
eng "Sunday|Monday|Tuesday|Wednesday|Thursday|Friday|Saturday"

Control Characters

The following are the control characters for the date/time format strings:

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

// Date format
//
// %a Abbreviated weekday name
// %A Long weekday name
// %b Abbreviated month name
// %B Full month name
// %d Day of the month as decimal 01 to 31
// %e Like %d, the day of the month as a decimal number, but without leading zero
// %m Month name as a decimal 01 to 12
// %n Like %m, the month as a decimal number, but without leading zero
// %y Two digit year
// %Y Four digit year

// Time format
//
// %H The hour using 24-hour clock (00 to 23)
// %I The hour using 12-hour clock (01 to 12)
// %k The hour using 24-hour clock (0 to 23); single digits are preceded by a blank.
// %l The hour using 12-hour clock (1 to 12); single digits are preceded by a blank.
// %M Minutes (00 to 59)
// %S Seconds (00 to 59)

ifWidget

SetForegroundColor(color As Integer) As Boolean

Sets the foreground color in ARGB format. Hex color values should be converted to integers before being passed to this method (e.g. the value &
 should be passed as 4294967295). You can use the method (available in the) to convert a hFFFFFFFF HexToInteger() core library extension

hex string to an integer.

SetBackgroundColor(color As Integer) As Boolean

Sets the background color in ARGB format. Hex color values should be converted to integers before being passed to this method (e.g. the value &
 should be passed as 4294967295). You can use the method (available in the) to convert a hFFFFFFFF HexToInteger() core library extension

hex string to an integer.

SetFont(font_filename As String) As Boolean

Sets the using a TrueType font (for example,).font_filename SD:/Arial.ttf

SetBackgroundBitmap(bitmap_filename As String, stretch As Boolean) As Boolean

Sets the background bitmap image. If stretch is True, then the image is stretched to the size of the window.

SetBackgroundBitmap(parameters As roAssociativeArray, stretch As Boolean) As Boolean

Sets the background bitmap image. If is True, then the image is stretched to the size of the window. The associative array can contain the stretch
following parameters:

Filename: The name of the image file

EncryptionAlgorithm: The file-encryption algorithm. Currently the options are "AesCtr" and "AesCtrHmac".

EncryptionKey: The key to decrypt the image file. This is a byte array consisting of 128 bits of key, followed by 128 bits of IV.

Note

The top 8 bits of the and values are "alpha" parameters. Zero is equivalent to SetForegroundColor() SetBGackgroundColor()
fully transparent and 255 to fully non-transparent. This feature allows for effects similar to subtitles. For example, you can create a semi-
transparent black box containing text over video.

Note

See the section in the entry for details on displaying encrypted images.Image Decryption roImagePlayer

https://docs.brightsign.biz/display/DOC/roImagePlayer#roImagePlayer-image_decryption

SetSafeTextRegion(region As roRectangle) As Boolean

Specifies the rectangle within the widget where the text can be drawn safely.

Show() As Boolean

Displays the widget. After creation, the widget is hidden until Show() is called.

Hide() As Boolean

Hides the widget.

GetFailureReason() As String

Yields additional useful information if a function return indicates an error.

SetRectangle(r As roRectangle) As Boolean

Changes the size and positioning of the widget rectangle using the passed object.roRectangle

roHdmiInputChanged, roHdmiOutputChanged

ON THIS PAGE

ifInt
GetInt() As Integer
SetInt(value As Integer) As Void

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

The object generates an or event object whenever the hotplug status of the HDMI roVideoMode roHdmiInputChanged roHdmiOutputChanged
input or output changes.

At least one event object will always be generated for a hotplug event, even for very quick disconnect/connect hotplug roHdmiOutputChanged
events. In most cases, a disconnect/connect hotplug event will generate two event objects.

ifInt

GetInt() As Integer

Returns the event ID.

SetInt(value As Integer) As Void

Sets the value of the event.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

roHtmlWidget

ON THIS PAGE

Object Creation
Initialization Parameters

[boolean] nodejs_enabled
[boolean] focus_enabled
[boolean] mouse_enabled
[boolean] scrollbar_enabled
[boolean] force_gpu_rasterization_enabled
[boolean] canvas_2d_acceleration_enabled
[boolean] javascript_enabled
[boolean] brightsign_js_objects_enabled
[string] transform
[string] user_agent
[string] url
[string] user_stylesheet
[string] hwz_default
[string] storage_path
[string or double] storage_quota
[roMessagePort] port
[roArray] fonts
[roArray] pcm_audio_outputs
[roArray] compressed_audio_outputs
[roArray] multi_channel_audio_outputs
[roAssociativeArray] inspector_server
[roAssociativeArray] security_params
[roAssociativeArray] javascript_injection
[roArray] assets

ifHtmlWidget
GetFailureReason() As String
Hide() As Boolean
Show() As Boolean
SetRectangle(r As roRectangle) As Boolean
SetURL(URL As String) As Boolean
MapFilesFromAssetPool(asset_pool As roAssetPool, asset_collection As roAssetCollection, pool_prefix As String,
uri_prefix As String) As Boolean
SetZoomLevel(scale_factor as Float) As Boolean
EnableSecurity(enable As Dynamic) As Boolean
EnableMouseEvents(enable As Boolean) As Boolean
SetPortrait(portrait_mode As Boolean) As Boolean
SetTransform(transform As String) As Boolean
SetAlpha(alpha As Integer) As Boolean
EnableScrollbars(scrollbars As Boolean) As Boolean
AddFont(filename As String) As Boolean
SetPcmAudioOutputs(outputs As roArray) As Boolean
SetCompressedAudioOutputs(outputs As roArray) As Boolean
SetMultichannelAudioOutputs(outputs As roArray) As Boolean
SetHWZDefault(default As String) As Void
SetVideoPlayerDefaults(defaults As roAssociativeArray) As Boolean
ForceGpuRasterization(enable As Boolean) As Boolean
EnableCanvas2dAcceleration(enable As Boolean) As Boolean
SetUserStylesheet(URI As String) As Boolean
SetAppCacheDir(file_path As String) As Boolean
SetAppCacheSize(maximum As Integer) As Boolean
FlushCachedResources() As Boolean
SetLocalStorageDir(file_path As String) As Boolean
SetLocalStorageQuota(maximum As Dynamic) As Boolean
SetWebDatabaseDir(file_path As String) As Boolean
SetWebDatabaseQuota(maximum As Dynamic) As Boolean

EnableJavaScript(enable As Boolean) As Boolean
AllowJavaScriptURLs(url_collection As roAssociativeArray)
PostJSMessage(data As roAssociativeArray) As Boolean
InjectJavaScript(code As String) As Boolean
StartInspectorServer(port As Integer) As Boolean
SetUserAgent(user_agent As String) As Boolean
GetUserAgent() As String
SetUserAgentSuffix(suffix As String) As Boolean
SetProxy(proxy as String) As Boolean
SetProxyBypass(hostnames As String) As Boolean

ifMessagePort
SetPort(port As roMessagePort)

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object embeds the Chromium HTML rendering engine, which can be rendered at full screen or as a widget. You can display multiple roHtml
instances at the same time.Widget

Object Creation

The object is initialized with an object, which specifies the size and positioning of the widget on the screen, and an roHtmlWidget roRectangle
optional associative array, which defines properties for the widget.

CreateObject("roHtmlWidget", rect As roRectangle, properties As roAssociativeArray)

The properties of an instance can be set with an associative array at initialization or with equivalent methods after initialization. roHtmlWidget
Because many properties cannot be changed without reloading the page (and can produce unpredictable results while the page is roHtmlWidget
running), we recommend setting properties at initialization when possible, rather than using the equivalent methods.

Initialization Parameters

The associative array passed during initialization can have the following parameters:

[boolean] nodejs_enabled

Enables on the widget. This value is by default.Node.js false

[boolean] focus_enabled

Enables focus for mouse/touchscreen events. This value is by default.true

Tip

Use the object to provide client certificates for websites. Use the object to set up a virtual memory roKeyStore roVirtualMemory
repository for Chromium.

Important

Defining initialization properties for an instance disables all property methods for that instance (e.g. , roHtmlWidget SetTransform() A
,). Other methods that do not affect properties (e.g. ,) can ddFont() SetUserStylesheet() Show() FlushCachedResources()

still be used.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/display/DOC/Node.js

[boolean] mouse_enabled

Enables mouse/touchscreen events. This value is by default.false

[boolean] scrollbar_enabled

Enables automatic scrollbars for content that does not fit into the viewport. This value is by default.false

[boolean] force_gpu_rasterization_enabled

Enables GPU rasterization for HTML graphics. By default, the decision to use GPU rasterization is based on . Setting this internal Chromium logic
value to / will enable/disable it for all content.true false

[boolean] canvas_2d_acceleration_enabled

Enables 2D canvas acceleration. This will improve the framerate of most HTML pages that use 2D animations, but can cause out-of-memory
issues with pages that use a large number of off-screen canvas surfaces. This value is by default in firmware versions 7.0.x and later and true f

 by default in firmware versions 6.2.x and earlier.alse

[boolean] javascript_enabled

Enables JavaScript on the widget. This value is by default.true

[boolean] brightsign_js_objects_enabled

Enables . This value is by default.BrightScript-JavaScript objects false

[string] transform

Sets the screen orientation of content in the widget (note that the coordinates and dimensions of the containing the widget areroRectangle not
. The following values are accepted:affected by rotation)

"identity": There is no transform (i.e. the widget content is oriented as landscape). This is the default setting.

"rot90": The widget content is rotated to portrait at 90 degrees (clockwise).

"rot270": The widget content is rotated to portrait at 270 degrees (counter-clockwise).

[string] user_agent

Modifies the default user-agent string for the instance.roHtmlWidget

[string] url

The URL to use for display. See the entry below for more information on using URIs to access files from local storage.SetUrl()

[string] user_stylesheet

Applies the specified user stylesheet to pages in the widget. The parameter is a specifying any resource in the storage. The URI file:
stylesheet can also be specified as inline data.

[string] hwz_default

Specifies the default HWZ behavior. See the entry below for more information.SetHWZDefault()

[string] storage_path

Creates a "Local Storage" subfolder in the specified directory. This folder is used by local storage applications such as the JavaScript classtorage
s.

[string or double] storage_quota

Sets the total size (in bytes) allotted to all local storage applications (including IndexedDB). The default total size is 5MB.

[roMessagePort] port

Configures the message port to which the instance will send events. When using initialization parameters, the parameter roHtmlWidget port
should be used instead of the method to ensure the script can catch , , and events.SetPort() load-started load-finished load-error

[roArray] fonts

https://www.chromium.org/developers/design-documents/chromium-graphics/how-to-get-gpu-rasterization
https://docs.brightsign.biz/display/DOC/BrightScript-JavaScript+Objects
https://docs.brightsign.biz/pages/viewpage.action?pageId=2883596#roHtmlWidget-seturl()
https://docs.brightsign.biz/pages/viewpage.action?pageId=2883596#roHtmlWidget-seturl()
https://docs.brightsign.biz/pages/viewpage.action?pageId=2883596#roHtmlWidget-sethwzdefault()

Specifies a list of font files that can be accessed by the webpage. Font files are specified as an array of string filenames. Supported font types
include TrueType Font files () and Web Open Font files (,)..ttf .woff .woff2

[roArray] pcm_audio_outputs

Configures the PCM audio output for the HTML widget. Outputs are specified as an array of instances.roAudioOutput

[roArray] compressed_audio_outputs

Configures compressed audio output (e.g. Dolby AC3 encoded audio) for the HTML widget. Outputs are specified as an array of in roAudioOutput
stances.

[roArray] multi_channel_audio_outputs

Configures multi-channel audio output for the HTML widget. Outputs are specified as an array of instances.roAudioOutput

[roAssociativeArray] inspector_server

Configures the for the widget.Chromium Inspector

[string] ip_addr: The Inspector IP address. This value is useful if the player is assigned more than one IP address (i.e. there are
multiple network interfaces) and you wish to limit the Inspector server to one. The default value is , which allows the "0.0.0.0"
Inspector to accept connections using either IP address.
[int] port: The port for the Inspector server.

[roAssociativeArray] security_params

Enables or disables Chromium security checks for cross-origin requests, local video playback from HTTP, etc.

[Boolean] websecurity: Enables Chromium security checks.

[Boolean] camera_enabled: Enables webpage access to USB cameras connected to the player (access is disabled by default).
This allows support for WebRTC applications.
[Boolean] insecure_https_enabled: Instructs the widget to ignore security errors when connecting to insecure HTTPS hosts
(insecure HTTPS is desabled by default). Enabling this feature makes the player insecure; it is not suitable for production environments
and should only be used for testing.

[roAssociativeArray] javascript_injection

Specifies JavaScript code to inject at different initialization points (JavaScript code can also be injected during runtime using the InjectJavaScr
 method). The associative array can contain three parameters (described below). Each parameter value is an array of associative arrays, ipt()

each containing a single key/value pair. The array must contain a key. The value is a string thatsource source can contain any of the
 following: pure JavaScript code, a path to a JavaScript file, or a base64-encoded string (i.e. beginning with data:text/javascript;

 charset=utf-8;base64,). Mutliple keys can be included, but the load order will be unpredictable. The array can also contain the source
optional key, which can be assigned one of the following values: , , or (see for more details); if world "application" "user" "main" this page
the parameter is not included in the array, is selected by default.world "application"

document_creation: The script will run as soon as the document is created. This behavior is not suitable for any DOM operation.

document_ready: The script will run as soon as the DOM is ready. This behavior is equivelant to the event firing DOMContentLoaded
in JavaScript.
deferred: The script will run when the page load finishes. The DOM cannot be changed at this point.

config = {
 javascript_injection: {
 document_creation: [{source: "0.js" }],
 document_ready: [{source: "1a.js" }, {source: "1b.js" }],
 deferred: [{source: "2.js" }]
 },
 url: "..."
 }

Note

The parameter is currently supported on the XTx43, 4Kx42, XDx33, HDx23, and LS423 models.camera_enabled

https://docs.brightsign.biz/display/DOC/HTML5+Best+Practices#HTML5BestPractices-debugging_webpages
http://doc.qt.io/archives/qt-5.6/qwebenginescript.html#ScriptWorldId-enum

[roArray] assets

Allows the instance to . If a file exists in multiple specified asset pools, the asset pool with the roHtmlWidget access one or more asset pools
lowest index in the array has precedence. Each array entry is an associative array containing information about an asset pool:

[roAssetPool] pool: An asset pool containing files

[roAssetCollection] collection: A manifest identifying the files in the pool

[string] uri_prefix: The URI prefix of the webpage resources to retrieve from the pool

[string] pool_prefix: The pool prefix that will replace the URI prefix when looking up the resource in the pool

ifHtmlWidget

GetFailureReason() As String

Gives more information when a member function returns .false

Hide() As Boolean

Hides the widget.

Show() As Boolean

Shows the widget.

SetRectangle(r As roRectangle) As Boolean

Changes the size and positioning of the widget rectangle using the passed object.roRectangle

SetURL(URL As String) As Boolean

Displays content from the specified URL. When using this method to retrieve content from local storage, specify the file location as follows: "file
. For example, an file in the "Content" folder on the SD card can be selected with the :/<drive>:/<directory>/<filename>" index.html

string . You can also omit the to select the currently active drive (i.e. whichever drive "file:/SD:/Content/index.html" drive specification
the current autorun as loaded from).

MapFilesFromAssetPool(asset_pool As roAssetPool, asset_collection As roAssetCollection, pool_prefix As String, uri_prefix As String) As
Boolean

Sets the mapping between the URL space and the pool files. HTML content that has been deployed via BrightAuthor will typically reside in the
pool and have encrypted SHA1-based filenames. A mapping mechanism is required to allow any relative URIs contained in the HTML content to
continue working and to locate the appropriate resources in their respective pool locations.

You can use this method to bind part of the resource URI space onto pool locations. This method accepts the following arguments: an roAssetPool
object containing assets, an object identifying the assets, and two semi-arbitrary strings (URI_PREFIX and POOL_PREFIX).roAssetCollection

Any URI in the form will be rewritten into the form . It will then "file:/[URI_PREFIX][RESOURCE_ID]" "[POOL_PREFIX][RESOURCE_ID]"
be located in the pool as if that name had been passed to the method. This binding occurs for every instance roAssetPoolFiles.GetPoolFilePath()
of , so different mappings can be used for different bundles of content.roHtmlWidget

SetZoomLevel(scale_factor as Float) As Boolean

Adjusts the scale factor for the displayed page (the default equals 1.0).

EnableSecurity(enable As Dynamic) As Boolean

Enables or disables Chromium security checks for cross-origin requests, local video playback from HTTP, etc. (if the argument is Boolean). This
method can also accept an associative array, which can contain the following parameters:

[Boolean] websecurity: Enables Chromium security checks. This parameter is identical to passing a Boolean argument to the
method itself.

camera_enabled[Boolean] : Enables webpage access to USB cameras connected to the player (access is disabled by default).
This allows support for WebRTC applications.
[Boolean] insecure_https_enabled: Instructs the widget to ignore security errors when connecting to insecure HTTPS hosts
(insecure HTTPS is desabled by default). Enabling this feature makes the player insecure; it is not suitable for production environments
and should only be used for testing.

Note

The parameter is currently supported on the XTx43, 4Kx42, XDx33, HDx23, and LS423 models.camera_enabled

https://docs.brightsign.biz/pages/viewpage.action?pageId=2883596#roHtmlWidget-mapfilesfromassetpool
https://docs.brightsign.biz/pages/createpage.action?spaceKey=DOC&title=rost&linkCreation=true&fromPageId=984375

EnableMouseEvents(enable As Boolean) As Boolean

Enables response to mouse/touchscreen presses if . Setting this method to (the default) disables this feature.true false

SetPortrait(portrait_mode As Boolean) As Boolean

Sets the widget orientation to portrait if . If this method is (the default), the widget is oriented as a landscape.true false

SetTransform(transform As String) As Boolean

Sets the screen orientation of content in the widget (note that the coordinates and dimensions of the containing the widget are not roRectangle
affected by rotation). This method accepts the following strings:

"identity": There is no transform (i.e. the widget content is oriented as landscape). This is the default setting.

"rot90": The widget content is rotated to portrait at 90 degrees (clockwise).

"rot270": The widget content is rotated to portrait at 270 degrees (counter-clockwise).

SetAlpha(alpha As Integer) As Boolean

Sets the overall alpha level for the widget (the default equals 255).

EnableScrollbars(scrollbars As Boolean) As Boolean

Enables automatic scrollbars for content that does not fit into the viewport if . Setting this method to (the default) disables this feature.true false

AddFont(filename As String) As Boolean

Supplies additional or custom typefaces for the HTML rendering engine. Supported font types include TrueType Font files () and Web Open .ttf
Font files (,). .woff .woff2

SetPcmAudioOutputs(outputs As roArray) As Boolean

Configures the PCM audio output for the HTML widget. This method accepts one or more outputs in the form of an of instaroArray roAudioOutput
nces.

SetCompressedAudioOutputs(outputs As roArray) As Boolean

Configures compressed audio output (e.g. Dolby AC3 encoded audio) for the HTML widget. This method accepts one or more outputs in the form
of an of instances. roArray roAudioOutput

SetMultichannelAudioOutputs(outputs As roArray) As Boolean

SetHWZDefault(default As String) As Void

Sets the default for HTML video. Normally, HWZ must be enabled in each tag, but passing "on" to this string enables HWZ HWZ mode <video>
for all elements. This method can also accept a semicolon-separated list of HWZ parameters:<video>

on/off: Enables or disables HWZ mode.

z-index: Sets the default z-ordering for elements. A positive integer places the video in front of all graphics; a negative <video>
integer places the video behind all graphics; and a zero value disables HWZ mode completely. You can customize the z-ordering of
individual video elements with respect to each other by .inserting the "z-index" parameter into the tag<video>

transform: Sets the default rotation for elements. HWZ mode must be enabled for transforms to work.<video>

Important

 The method has been deprecated in firmware 6.1. We recommend using the method instead.SetPortrait() SetTransform()

Note

When one or more audio-output methods are called, they will override the settings of the following methods: ifAudioControl SetAudioO
. Calls to HTML audio-output methods will only utput(), MapStereoOutput(), SetUsbAudioPort(), MapDigitalOutput()

take effect with subsequent calls to . Audio-output settings on an instance will be overwritten by SetUrl() roHtmlWidget equivalent
.settings in the HTML

https://docs.brightsign.biz/display/DOC/HTML5+Video#HTML5Video-hwz_video
https://docs.brightsign.biz/display/DOC/HTML5+Video#HTML5Video-z-index
https://docs.brightsign.biz/display/DOC/HTML5+Video#HTML5Video-audio_routing_<video>_elements
https://docs.brightsign.biz/display/DOC/HTML5+Video#HTML5Video-audio_routing_<video>_elements

identity: No transformation (default behavior)

rot90: 90 degree clockwise rotation

rot180: 180 degree rotation

rot270: 270 degree clockwise rotation

mirror: Horizontal mirror transformation

mirror_rot90: Mirrored 90 degree clockwise rotation

mirror_rot180: Mirrored 180 degree clockwise rotation

mirror_rot270: Mirrored 270 degree clockwise rotation

fade: Sets the fading behavior for elements.<video>

auto: Videos transition without fade effects. This is the default behavior.

 always : When a video ends, the video window will go black. The new video will then fade in.

: Enables luma and/or chroma keying for elements. HWZ mode must be enabled for lumaluma-key/cr-key/cb-key <video>
/chroma keying to work.

Example
 html.SetHWZDefault("on; transform:rot90; luma-key:#ff0020;")

SetVideoPlayerDefaults(defaults As roAssociativeArray) As Boolean

Sets default playback settings for elements in the widget. Available parameters are identical to the method. <video> roVideoPlayer.PlayFile()
Default settings will be overwritten by parameters specified in individual elements.<video>

ForceGpuRasterization(enable As Boolean) As Boolean

Enables GPU rasterization for HTML graphics. This method will take effect for subsequent page loads only. If Chromium determines that a page
is not compatible, it will refuse to enable GPU rasterization for that page.

EnableCanvas2dAcceleration(enable As Boolean) As Boolean

Enables 2D canvas acceleration. This will improve the framerate of most HTML pages that use 2D animations, but can cause out-of-memory
issues with pages that use a large number of off-screen canvas surfaces. We recommend thoroughly testing this method with your HTML content
before deploying it.

SetUserStylesheet(URI As String) As Boolean

Applies the specified user stylesheet to the page(s) loaded in the widget. The parameter is a specifying any resource in the storage. URI file:
The stylesheet can also be specified as inline data in the following form:

"data:text/css;charset=utf-8;base64,<base64 encoded data>"

This method will fail if you specify the inline data in any other order or if you use any data format other than base64.

SetAppCacheDir(file_path As String) As Boolean

Sets the directory to use for storing the application cache (which services tags). The file path is <html manifest="example.appcache">
passed to the method as a string (e.g. "SD:/appcache").

SetAppCacheSize(maximum As Integer) As Boolean

Sets the maximum size (in bytes) for the application cache. Changing the storage size of the application cache will clear the cache and rebuild
the cache storage. Depending on database-specific attributes, you will only be able to set the size in units that are equal to the page size of the
database, which is established at creation. These storage units will occur only in the following increments: 512, 1024, 2048, 4096, 8192, 16384,
32768.

FlushCachedResources() As Boolean

Note

GPU rasterization is enabled by default in firmware versions 6.2.x and later.

https://docs.brightsign.biz/display/DOC/roVideoPlayer#roVideoPlayer-playfile
https://docs.brightsign.biz/pages/viewpage.action?pageId=2883596#roHtmlWidget-seturl()

Discards any resources that Chromium has cached in memory.

SetLocalStorageDir(file_path As String) As Boolean

Creates a "Local Storage" subfolder in the specified directory. This folder is used by local storage applications such as the JavaScript classtorage
s.

SetLocalStorageQuota(maximum As Dynamic) As Boolean

Sets the total size (in bytes) allotted to all local storage applications. This method can accept a string, double, or integer. Strings and doubles can
be used to specify 64-bit values, while integer values are limited to 32 bits. The default total size is 5MB.

SetWebDatabaseDir(file_path As String) As Boolean

Specifies the directory that should be used for web database applications (e.g. "SD:/webdb"). This method must be called before using web
database applications such as Web SQL or IndexedDB.

SetWebDatabaseQuota(maximum As Dynamic) As Boolean

Sets the total size (in bytes) allotted to all web database applications. This method can accept a string, double, or integer. Strings and doubles
can be used to specify 64-bit values, while integer values are limited to 32 bits. The default total size is 5MB.

EnableJavaScript(enable As Boolean) As Boolean

Enables/disables JavaScript on the widget. JavaScript is enabled by default.

AllowJavaScriptURLs(url_collection As roAssociativeArray)

Allows the specified JavaScript BrightScript classes to be used by the specified URLs (all BrightScript classes in JavaScript are disabled by
default). This method accepts an associative array that maps JavaScript BrightScript classes to the URL(s) that are allowed to use them.

An key indicates that all classes are authorized for the associated URL(s).all

An asterisk value indicates that all URLs are authorized for the associated BrightScript class."*"

A value indicates that all local pages are authorized for the associated BrightScript class."local"

The following will enable all BrightScript classes for all URLs:

html.AllowJavaScriptUrls({ all: "*" })

The following will enable all BrightScript classes for local pages and the BrightSign homepage:

html.AllowJavaScriptUrls({ all: ["local", "http://www.brightsign.biz"]})

PostJSMessage(data As roAssociativeArray) As Boolean

Posts a collection of key:value pairs to the JavaScript class (see the JavaScript Objects for BrightScript tech note for more BSMessagePort
details). This method does not support passing nested associative arrays.

InjectJavaScript(code As String) As Boolean

Immediately injects a user script into the JavaScript engine. The passed string can contain any of the following: pure JavaScript code, a path to a
JavaScript file, or a base64-encoded string (i.e. beginning with). data:text/javascript;charset=utf-8;base64,

This method can be used to simulate the option:bind_ready

if type(event) = "roHtmlWidgetEvent" then
 if event.GetData().reason = "load-finished" then
 h.InsertJavascript("fillPasswordFields()")
 end if
end if

StartInspectorServer(port As Integer) As Boolean

Enables the , which allows you to debug JavaScript applications while a webpage is running. To access the console, Chromium Inspector
navigate to the player IP address at the specified port number. See for documentation relating to the JavaScript console.this page

SetUserAgent(user_agent As String) As Boolean

Changes the default user-agent string for the instance.roHtmlWidget

GetUserAgent() As String

Returns the currently active user-agent string for the instance.roHtmlWidget

SetUserAgentSuffix(suffix As String) As Boolean

Appends text to the current user-agent string. Subsequent calls to this method will replace the suffix that was previously specified.

SetProxy(proxy as String) As Boolean

Sets the name or address of the proxy server that the instance will use to make HTTP requests. This method takes effect roHtmlWidget
immediately. It does not affect network operations performed by other components in the firmware. The string can be used to specify either the
proxy URL or the location of a proxy file:.pac

Proxy URL: The proxy address should be formatted as "http://user:password@hostname:port". The hostname can contain up to four "*"
characters; each "*" character can be used to replace one octet from the current IP address. For example, if the IP address is currently
192.168.1.2, and the proxy is set to "proxy-*-*", then the player will attempt to use a proxy named "proxy-192.168".
Proxy File: The proxy file can be located on either the local file system or the network. If the file is local, there are no file-name .pac
restrictions; if the file is located on the network, the file name should have a extension. If the URL is a hostname only, it will be .pac
considered a proxy-server address rather than a file URL.

SetProxyBypass(hostnames As String) As Boolean

Exempts the specified hosts from the proxy configuration on the instance. The passed array should consist of one or more roHtmlWidget
hostnames. The player will attempt to reach the specified hosts directly rather than using the proxy that has been specified with the SetProxy()
method. For example, the hostname "example.com" would exempt "example.com", "example.com:80", and "www.example.com" from the proxy
setting.

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type to the attached message port.roHtmlWidgetEvent

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

Note

 Changing the DOM is only possible at and . Also, since JavaScript is only guaranteed to be ready at bind_dom_loaded bind_ready
, your callbacks must use this event if they invoke any global functions.bind_ready

Example

 The following are examples of valid location formats for files:.pac

file:///storage/sd/asset_pool/a/b/ababababababa

http://example:8080/setup/proxy.pac

https://example/encrypted/proxy.pac

https://example:433/encrypted/proxy.pac

ftp://example/files/proxy.pac

file:///storage/sd/myproxypac.txt

https://docs.brightsign.biz/display/DOC/HTML5+Best+Practices#HTML5BestPractices-debugging_webpages
http://trac.webkit.org/wiki/WebInspector

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

The following examples show how to configure an instance using an associative array or methods. Note that these techniques are roHtmlWidget
mutually exclusive.

Example (with initialization properties)
x = 0
y = 0
width = 1920
height = 1080
url = "http://www.brightsign.biz"

rect = CreateObject("roRectangle", x, y, width, height)

config = {
url: url,
mouse_enabled: true,
storage_path: "/local/",
}

html = CreateObject("roHtmlWidget", rect, config)

html.Show()

Example (with methods)
x = 0
y = 0
width = 1920
height = 1080
url = "http://www.brightsign.biz"

rect = CreateObject("roRectangle", x, y, width, height)
html = CreateObject("roHtmlWidget", rect)

html.SetUrl(url)
html.EnableMouseEvents(true)
html.SetLocalStorageDir("/local/")
html.Show()

roHtmlWidgetEvent

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifHTMLWidgetEvent
GetData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

If an is attached to an , it will receive objects when something happens to the parent roMessagePort roHtmlWidget roHtmlWidgetEvent roHtmlWidg
instance. et

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifHTMLWidgetEvent

GetData() As Object

Returns an associative array of key/value pairs. The key identifies the cause of the event:reason

load-started: The HTML widget has started loading a page.

load-finished: The HTML widget completed loading a page.

load-error: The HTML widget has failed to load a page. Use the key to identify the failing resource and the key to uri message
retrieve some explanatory text.

roImageBuffer

ON THIS PAGE

ifImageBufferControl
DisplayBuffer(x As Integer, y As Integer) As Boolean
GetBufferByteArray() As roByteArray
GetBufferMetadata() As roAssociativeArray
ConvertFormat(a As String) As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object allows you to access decoded image-file data. You can then copy or manipulate that data.

Object Creation: An object is instantiated with an object and a string specifying the file path of an image file.roImageBuffer roImagePlayer

CreateObject("roImageBuffer", image_player As Object, file_path As String)

Example
imgPlayer = CreateObject("roImagePlayer")

imgBuffer = CreateObject("roImageBuffer", imgPlayer, "SD:/content/image.png")

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifImageBufferControl

DisplayBuffer(x As Integer, y As Integer) As Boolean

Displays the image on screen. The and integers specify the coordinates of the top-left corner of the image.x y

GetBufferByteArray() As roByteArray

Returns the decoded image-file data as an .roByteArray

GetBufferMetadata() As roAssociativeArray

Returns an associative array containing information about the image file. The associative array contains the following keys:

width: The width of the image file

height: The height of the image file

acceptable: A Boolean integer value indicating whether the image can be displayed by the instanceroImagePlayer
format: The color space (ARGB/CMYK) of the image file

ConvertFormat(a As String) As Object

roImagePlayer

ON THIS PAGE

ifImageControl
DisplayFile(image_filename As String) As Boolean
DisplayFile(parameters As roAssociativeArray) As Boolean
PreloadFile(image_filename As String) As Boolean
PreloadFile(parameters As roAssociativeArray) As Boolean
DisplayPreload() As Boolean
StopDisplay() As Boolean
DisplayFileEx(filename As String, mode As Integer, x As Integer, y As Integer) As Boolean
PreloadFileEx(filename As String, mode As Integer, x As Integer, y As Integer) As Boolean
SetDefaultMode(mode As Integer) As Boolean
SetDefaultTransition(transition As Integer) As Boolean
OverlayImage(image_filename As String, x As Integer, y As Integer) As Boolean
SetRectangle(r As roRectangle) As Boolean
GetRectangle() As roRectangle
CreateTestHole(hole As roRectangle) As Boolean
SetTransitionDuration(duration As Integer) As Boolean
DisplayBuffer(a As Object, b As Integer, c As Integer) As Boolean
Hide() As Boolean
Show() As Boolean

X, Y
Testing Display Modes
Preloading Images
Image Decryption

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object displays static bitmap images on the video display. The simplest way to use is to make calls to with roImagePlayer DisplayFile()
the filename as a String. Alternatively, you can use in conjunction with to have more control. For more PreloadFile() DisplayPreload()
pleasing aesthetics when generating an image player, use the object. roImageWidget

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Object Creation: The image player is displayed by first creating and instances, then calling using roRectangle roImagePlayer SetRectangle()
the instance as the argument.roRectangle

rectangle = CreateObject("roRectangle", 0, 0, 1024, 768)
i = CreateObject("roImagePlayer")
i.SetRectangle(rectangle)

ifImageControl

DisplayFile(image_filename As String) As Boolean

Displays the image with the specified filename. The image_filename string must point to a , , or 8-bit, 24-bit, or 32-bit file. Note that .png .jpeg .bmp
image files with CMYK color profiles are not supported..jpeg

DisplayFile(parameters As roAssociativeArray) As Boolean

Displays an image using an associative array of display parameters:

Filename: The name of the image file

Mode: The image mode. See the entry for SetDefaultMode() below for more details.

Transition: The image transition setting. See the entry for SetDefaultTransition() below for more details.

EncryptionAlgorithm: The file-encryption algorithm. Currently the options are "AesCtr" and "AesCtrHmac".

EncryptionKey: The key to decrypt the image file. This is a byte array consisting of 128 bits of key, followed by 128 bits of IV.

See the Image Decryption section below for details on displaying encrypted images.

PreloadFile(image_filename As String) As Boolean

Loads the specified image file into an offscreen memory buffer.

PreloadFile(parameters As roAssociativeArray) As Boolean

Loads an image file into an offscreen memory buffer. Image display properties are determined by an associative array of parameters:

Filename: The name of the image file

Mode: See the entry for SetDefaultMode() below for more details.

Transition: See the entry for SetDefaultTransition() below for more details.

DisplayPreload() As Boolean

Uses the on-screen memory buffer to display the image stored in the offscreen memory buffer using . There are only two PreloadFile()
memory buffers: one is displayed on screen; and the other is used for preloading images. can be called multiple times before PreloadFile() Di

 is called, and will keep loading into the same off-screen buffer. The method calls followed splayPreload() DisplayFile() PreloadFile()
immediately by , so any previously preloaded image will be lost. If no image is preloaded, will have DisplayPreload() DisplayPreload()
no effect.

StopDisplay() As Boolean

Removes an image from the display.

DisplayFileEx(filename As String, mode As Integer, x As Integer, y As Integer) As Boolean

PreloadFileEx(filename As String, mode As Integer, x As Integer, y As Integer) As Boolean

SetDefaultMode(mode As Integer) As Boolean

Sets the default image display mode for DisplayFile() and PreloadFile(). If SetDefaultMode() is not called, then the default mode is set to 0
(equivalent to the image being centered without scaling). The supported display mode are listed below:

0 – Center image: No scaling takes place. Cropping only occurs if the image is bigger than the window.
1 – Scale to fit: The image is scaled so that it is fully viewable, with its aspect ratio maintained.
2 – Scale to fill and crop: The image is scaled so that it completely fills the window, with its aspect ratio maintained.

3 – Scale to fill: The image is stretched so that it fills the window and the whole image is viewable. The aspect ratio will not be
maintained if it is different from the window.

SetDefaultTransition(transition As Integer) As Boolean

Sets the transition to be used when the next image is displayed. The following are available transitions:

0: No transition: immediate blit
1-4: Wipes from top, bottom, left, or right.
5-8: Explodes from centre, top left, top right, bottom left, or bottom right.
10-11: Uses vertical or horizontal venetian-blind effect.
12-13: Combs vertical or horizontal.
14: Fades out to background color, then back in.
15: Fades between current image and new image.
16-19: Slides from top, bottom, left or right.
20-23: Slides entire screen from top, bottom, left, or right.
24-25: Scales old image in, then the new one out again (this works as a pseudo rotation around a vertical or horizontal axis).
26-29: Expands a new image onto the screen from right, left, bottom, or top.

SetTransform(transform As String) As Boolean

Applies one of eight transforms to the image. Calls to this method only take effect when the next file is displayed. Note that the image rectangle
itself does not change to accommodate the new height and width ratio of a transformed image. This method can be called separately on multiple r

 or instances.oImagePlayer roImageWidget

identity: No transformation (default behavior)

rot90: 90 degree clockwise rotation

rot180: 180 degree rotation

rot270: 270 degree clockwise rotation

mirror: Horizontal mirror transformation

mirror_rot90: Mirrored 90 degree clockwise rotation

mirror_rot180: Mirrored 180 degree clockwise rotation

mirror_rot270: Mirrored 270 degree clockwise rotation

OverlayImage(image_filename As String, x As Integer, y As Integer) As Boolean

Composites the image with the specified filename on top of the primary image. Use the and integers to specify its location DisplayFile() x y
within the image widget.

SetRectangle(r As roRectangle) As Boolean

Changes the size and positioning of the image rectangle using the passed object.roRectangle

GetRectangle() As roRectangle

Returns an object that has the same location and dimensions as the object used to define the image window.roRectangle roRectangle

CreateTestHole(hole As roRectangle) As Boolean

Creates a hole in the image with the location and dimensions specified in the passed instance. Any video windows located directly roRectangle
beneath the image will show through. This method will disrupt image playback and should be used for test purposes only.

SetTransitionDuration(duration As Integer) As Boolean

Sets the amount of time it takes (in milliseconds) for a specified transition effect to take place. The default transition duration is 1000 milliseconds.

DisplayBuffer(a As Object, b As Integer, c As Integer) As Boolean

Hide() As Boolean

Hides the image currently being displayed by the widget.roImagePlayer

Show() As Boolean

Shows the image currently being displayed by the widget.roImagePlayer

X, Y

The x and y values indicate which position of the image to center as near as possible, or both x and y can be set to -1, which uses the center of
the image as the point to position nearest to the center.

To display images in a zone, must be called, and must be included in a script to use the zones SetRectangle() EnableZoneSupport()
functionality.

Testing Display Modes

Here are some example shell commands you can use to test the different display modes:

BrightSign> image filename.bmp 0
BrightSign> image filename.bmp 1
BrightSign> image filename.bmp 2
BrightSign> image filename.bmp 3

BrightSign> image filename.bmp 0 0 0
BrightSign> image filename.bmp 2 0 0

Preloading Images

The following example script uses preloaded images to improve the UI speed when the user hits a key on the keyboard. As soon as a key is
struck, the display switches to the new image, which has already been preloaded. The only possible delay occurs if the key is hit while the image
is preloading. In this case, the image will display as soon as it is loaded.

i = CreateObject("roImagePlayer")
p = CreateObject("roMessagePort")
k = CreateObject("roKeyboard")
k.SetPort(p)

i.PreloadFile("one.bmp")

loop:
i.DisplayPreload
i.PreloadFile("two.bmp")
Wait(0,p)
i.DisplayPreload
i.PreloadFile("one.bmp")
Wait(0,p)
goto loop

Image Decryption

The , , , , and objects can be used to display encrypted images. Each roImagePlayer roImageWidget roClockWidget roTextWidget roCanvasWidget
object has an image playback method that accepts an associative array, which can include the and dEncryptionAlgorithm EncryptionKey
ecryption parameters.

You can call to determine if a player model and firmware version supports image roDeviceInfo.HasFeature("media_decryption")
decryption.

Example
print "Play ENCRYPTED image in an image widget"

imagePlayer = CreateObject("roImageWidget", r1)

Note

Contact support@brightsign.biz to learn more about generating a key for obfuscation and storing it on the player.

mailto:support@brightsign.biz

aa=CreateObject("roAssociativeArray")
aa.filename = "sd:/images_enc.jpg"
aa.encryptionalgorithm = "AesCtr"
aa.encryptionkey = CreateObject("roByteArray")
aa.encryptionkey.fromhexstring
("01030507090b0d0f00020406080a0c0e00000000000000000000000000000000")

imagePlayer.DisplayFile(aa)
sleep(10000)
imagePlayer.Hide()

print "Play ENCRYPTED image with PlayStaticImage"

videoPlayer = CreateObject("roVideoPlayer")

aa=CreateObject("roAssociativeArray")
aa.filename = "sd:/images_enc.jpg"
aa.encryptionalgorithm = "AesCtr"
aa.encryptionkey = CreateObject("roByteArray")
aa.encryptionkey.fromhexstring
("01030507090b0d0f00020406080a0c0e00000000000000000000000000000000")

videoPlayer.PlayStaticImage(aa)
sleep(10000)
videoPlayer = invalid

print "Show CLOCK image"

resourceManager = CreateObject("roResourceManager", "sd:/resources.txt")

clockWidget = CreateObject("roClockWidget", r1, resourceManager, {})

aa=CreateObject("roAssociativeArray")
aa.filename = "sd:/images_enc.jpg"
aa.encryptionalgorithm = "AesCtr"
aa.encryptionkey = CreateObject("roByteArray")
aa.encryptionkey.fromhexstring
("01030507090b0d0f00020406080a0c0e00000000000000000000000000000000")

clockWidget.SetBackgroundBitmap(aa, True)
clockWidget.Show()
sleep(10000)
clockWidget.Hide()

print "Text widget with encrypted background image"

twParams = CreateObject("roAssociativeArray")
twParams.LineCount = 1
twParams.TextMode = 1
twParams.Rotation = 0
twParams.Alignment = 1

tw=CreateObject("roTextWidget",r1,1,2,twParams)
tw.SetBackgroundColor(&h00ff0000)
tw.SetForegroundColor(&hff00ff00)
tw.PushString("Encrypted Background")
'tw.SetRectangle(r)

aa=CreateObject("roAssociativeArray")
aa.filename = "sd:/images_enc.jpg"
aa.encryptionalgorithm = "AesCtr"
aa.encryptionkey = CreateObject("roByteArray")
aa.encryptionkey.fromhexstring
("01030507090b0d0f00020406080a0c0e00000000000000000000000000000000")

tw.SetBackgroundBitmap(aa, True)
tw.Show()

sleep(10000)
tw.Hide()

cw=CreateObject("roCanvasWidget", rect)
canvas_aa=CreateObject("roAssociativeArray")
canvas_aa.Filename = "sd:/images_enc.jpg"
canvas_aa.Encryptionalgorithm = "AesCtr"
canvas_aa.EncryptionKey = CreateObject("roByteArray")
canvas_aa.EncryptionKey.FromHexString
("01030507090b0d0f00020406080a0c0e00000000000000000000000000000000")
cw.SetLayer(canvas_aa, 1)
cw.Show()

roImageWidget

ON THIS PAGE

ifImageControl
DisplayFile(image_filename As String) As Boolean
DisplayFile(parameters As roAssociativeArray) As Boolean
PreloadFile(image_filename As String) As Boolean
PreloadFile(parameters As roAssociativeArray) As Boolean
DisplayPreload() As Boolean
StopDisplay() As Boolean
DisplayFileEx(filename As String, mode As Integer, x As Integer, y As Integer) As Boolean
PreloadFileEx(filename As String, mode As Integer, x As Integer, y As Integer) As Boolean
SetDefaultMode(mode As Integer) As Boolean
SetDefaultTransition(transition As Integer) As Boolean
SetTransform(transform As String) As Boolean
OverlayImage(image_filename As String, x As Integer, y As Integer) As Boolean
SetRectangle(r As roRectangle) As Boolean
GetRectangle() As roRectangle
CreateTestHole(hole As roRectangle) As Boolean
SetTransitionDuration(duration As Integer) As Boolean
DisplayBuffer(a As Object, b As Integer, c As Integer) As Boolean
Hide() As Boolean
Show() As Boolean

Multiscreen Images

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object can be used in place of in cases where the image is displayed within a rectangle. Using an can result roImagePlayer roImageWidget
in more pleasing aesthetics for image player creation; it can also be used to display images in a multi-screen array. Beyond this, roImageWidget
behaves identically to . roImagePlayer

Object Creation: The image widget area is generated using an object.roRectangle

rectangle = CreateObject("roRectangle", 0, 0, 1024, 768)
i = CreateObject("roImageWidget", rectangle)

ifImageControl

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

DisplayFile(image_filename As String) As Boolean

Displays the image with the specified filename. The image_filename string must point to a , , or 8-bit, 24-bit, or 32-bit file. Note that .png .jpeg .bmp
image files with CMYK color profiles are not supported..jpeg

DisplayFile(parameters As roAssociativeArray) As Boolean

Displays an image using an associative array of display parameters:

Filename: The name of the image file

Mode: The image mode. See the entry for SetDefaultMode() below for more details.

Transition: The image transition setting. See the entry for SetDefaultTransition() below for more details.

EncryptionAlgorithm: The file-encryption algorithm. Currently the options are "AesCtr" and "AesCtrHmac".

EncryptionKey: The key to decrypt the image file. This is a byte array consisting of 128 bits of key, followed by 128 bits of IV.

See the descrption in the entry for details on displaying encrypted images.Image Decryption roImagePlayer

PreloadFile(image_filename As String) As Boolean

Loads the specified image file into an offscreen memory buffer.

PreloadFile(parameters As roAssociativeArray) As Boolean

Loads an image file into an offscreen memory buffer. Image display properties are determined by an associative array of parameters:

Filename: The name of the image file

Mode: See the entry for SetDefaultMode() below for more details.

Transition: See the entry for SetDefaultTransition() below for more details.

DisplayPreload() As Boolean

Uses the on-screen memory buffer to display the image stored in the offscreen memory buffer using . There are only two PreloadFile()
memory buffers: one is displayed on screen; and the other is used for preloading images. can be called multiple times before PreloadFile() Di

 is called, and will keep loading into the same off-screen buffer. The method calls followed splayPreload() DisplayFile() PreloadFile()
immediately by , so any previously preloaded image will be lost. If no image is preloaded, will have DisplayPreload() DisplayPreload()
no effect.

StopDisplay() As Boolean

Removes an image from the display.

DisplayFileEx(filename As String, mode As Integer, x As Integer, y As Integer) As Boolean

PreloadFileEx(filename As String, mode As Integer, x As Integer, y As Integer) As Boolean

SetDefaultMode(mode As Integer) As Boolean

Sets the default image display mode for DisplayFile() and PreloadFile(). If SetDefaultMode() is not called, then the default mode is set to 0
(equivalent to the image being centered without scaling). The supported display mode are listed below:

0 – Center image: No scaling takes place. Cropping only occurs if the image is bigger than the window.
1 – Scale to fit: The image is scaled so that it is fully viewable, with its aspect ratio maintained.
2 – Scale to fill and crop: The image is scaled so that it completely fills the window, with its aspect ratio maintained.
3 – Scale to fill: The image is stretched so that it fills the window and the whole image is viewable. The aspect ratio will not be
maintained if it is different from the window.

SetDefaultTransition(transition As Integer) As Boolean

Sets the transition to be used when the next image is displayed. The following are available transitions:

0: No transition: immediate blit
1-4: Wipes from top, bottom, left, or right.
5-8: Explodes from centre, top left, top right, bottom left, or bottom right.
10-11: Uses vertical or horizontal venetian-blind effect.
12-13: Combs vertical or horizontal.

https://docs.brightsign.biz/display/DOC/roImagePlayer#roImagePlayer-image_decryption

14: Fades out to background color, then back in.
15: Fades between current image and new image.
16-19: Slides from top, bottom, left or right.
20-23: Slides entire screen from top, bottom, left, or right.
24-25: Scales old image in, then the new one out again (this works as a pseudo rotation around a vertical or horizontal axis).
26-29: Expands a new image onto the screen from right, left, bottom, or top.

SetTransform(transform As String) As Boolean

Applies one of eight transforms to the image. Calls to this method only take effect when the next file is displayed. Note that the image rectangle
itself does not change to accommodate the new height and width ratio of a transformed image. This method can be called separately on multiple r

 or instances.oImagePlayer roImageWidget

identity: No transformation (default behavior)

rot90: 90 degree clockwise rotation

rot180: 180 degree rotation

rot270: 270 degree clockwise rotation

mirror: Horizontal mirror transformation

mirror_rot90: Mirrored 90 degree clockwise rotation

mirror_rot180: Mirrored 180 degree clockwise rotation

mirror_rot270: Mirrored 270 degree clockwise rotation

OverlayImage(image_filename As String, x As Integer, y As Integer) As Boolean

Composites the image with the specified filename on top of the primary image. Use the and integers to specify its location DisplayFile() x y
within the image widget.

SetRectangle(r As roRectangle) As Boolean

Changes the size and positioning of the image rectangle using the passed object.roRectangle

GetRectangle() As roRectangle

Returns an object that has the same location and dimensions as the object used to define the image window.roRectangle roRectangle

CreateTestHole(hole As roRectangle) As Boolean

Creates a hole in the image with the location and dimensions specified in the passed instance. Any video windows located directly roRectangle
beneath the image will show through. This method will disrupt image playback and should be used for test purposes only.

SetTransitionDuration(duration As Integer) As Boolean

Sets the amount of time it takes (in milliseconds) for a specified transition effect to take place. The default transition duration is 1000 milliseconds.

DisplayBuffer(a As Object, b As Integer, c As Integer) As Boolean

Hide() As Boolean

Hides the image currently being displayed by the instance.roImageWidget

Show() As Boolean

Shows the image currently being displayed by the instance.roImageWidget

Multiscreen Images

This object includes overloaded and methods. These methods receive an object that PreloadFile() DisplayFile() roAssociativeArray
stores various options to be passed. They must be used when displaying images across multiple screens in an array, or displaying a portion of an
image—though they can also be used in place of the original method calls in all cases.

The following code uses the method for a multiscreen display:PreloadFile()

i=CreateObject("roImageWidget")
a=CreateObject("roAssociativeArray")
a["Filename"] = "test.jpg"

a["Mode"] = 1
a["Transition"] = 14
a["MultiscreenWidth"] = 3
a["MultiscreenHeight"] = 2
a["MultiscreenX"] = 0
a["MultiscreenY"] = 0
i.PreloadFile(a)
i.DisplayPreload

The , , and values are the same as those documented for the and methods filename mode transition DisplayFile() PreloadFile()
above. The and parameters specify the width and height of the multi-screen matrix. For example, MultiscreenWidth MultiscreenHeight
3x2 would be three screens wide and two screens high. The and specify the position of the current screen MultiscreenX MultiscreenY
within that matrix.

In the above case, on average only 1/6 of the image is drawn on each screen, though the image mode still applies so that, depending on the
shape of the image, it may have black bars on the side screens. It is relatively simple, therefore, for an image widget to display part of an image
based on its position in the multiscreen array. The following are default values for the parameters:

Mode = 0
Transition = 0
MultiscreenWidth = 1
MultiscreenHeight = 1
MultiscreenX = 0
MultiscreenY = 0

This code uses to display a portion of an image:DisplayFile()

i=CreateObject("roImageWidget")
a=CreateObject("roAssociativeArray")
a["Filename"] = "test.JPG"
a["Mode"] = 0
a["SourceX"] = 600
a["SourceY"] = 600
a["SourceWidth"] = 400
a["SourceHeight"] = 400
i.DisplayFile(a)

This displays just a portion of the image test JPG starting at coordinates , , and by in size. SourceX SourceY SourceWidth SourceHeight
The is still honored as if it were displaying the whole file.viewmode

roRectangle

ON THIS PAGE

Rectangles with 4K Video Modes

ifRectangle
SetX(x As Integer) As Void
SetY(y As Integer) As Void
SetWidth(width As Integer) As Void
SetHeight(height As Integer) As Void
GetX() As Integer
GetY() As Integer
GetWidth() As Integer
GetHeight() As Integer

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is passed to various video and graphics widgets (, , , etc.) to specify their size and roVideoPlayer roImageWidget roHtmlWidget
positioning.

Object Creation: This object is created with coordinate and dimension parameters.

CreateObject("roRectangle", x As Integer, y As Integer, width As Integer, height As Integer)

SetRectangle() calls made by widget objects (e.g.) honor the view-mode or aspect-ratio conversion mode set roImageWidget.SetRectangle()
by the user. If the user has set the video player for letterboxing, it will occur if the video does not fit in the new rectangle exactly.

Rectangles with 4K Video Modes

When the player is using a 4K video mode (e.g. 3840x2160x60p), rectangles still operate as if the total screen area is 1920x1080 (unless full-
 is enabled on the XTx43). They are then scaled by a factor of 2 when the video is output. For example, to display a full-screen resolution graphics

4K video, set the instance to ; to display an additional HD video in the top-right quadrant of the screen, set another roRectangle 0,0,1920,1080 r
instance to .oRectangle 960,0,960,540

Note that, while 4K video is output at a 1:1 pixel ratio, graphics elements (, , etc.) are upscaled to match the size roImageWidget roCanvasWidget
of the 4K video output. This occurs irrespective of the size of the original image and widget rectangle: For example, an image in a 960x540
rectangle will first be downscaled to 960x540, then upscaled to 1920x1080. If you want to display images without upscaling on 4K video modes,
display them in a video window using the method (or enable on the XTx43).roVideoPlayer.PlayStaticImage() full-resolution graphics

ifRectangle

SetX(x As Integer) As Void

Specifies a new x coordinate for the rectangle.

SetY(y As Integer) As Void

Specifies a new y coordinate for the rectangle.

SetWidth(width As Integer) As Void

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/display/DOC/roVideoMode#roVideoMode-setmode
https://docs.brightsign.biz/display/DOC/roVideoMode#roVideoMode-setmode
https://docs.brightsign.biz/display/DOC/roVideoMode#roVideoMode-setmode

Specifies a new width value for the rectangle.

SetHeight(height As Integer) As Void

Specifies a new height value for the rectangle.

GetX() As Integer

Returns the x coordinate of the rectangle.

GetY() As Integer

Returns the y coordinate of the rectangle.

GetWidth() As Integer

Returns the width of the rectangle.

GetHeight() As Integer

Returns the height of the rectangle.

roStreamQueue

ON THIS PAGE

File Requirements
ifSteamQueue

QueueFile(filename As String) As Boolean
Loop(loop As Boolean) As Boolean
LoopLast(loop_last As Boolean) As Boolean
SetPreferredAudio(description As String) As Boolean
SetPreferredVideo(description As String) As Boolean
NextFile(a As Boolean) As Boolean
Start() As Boolean

ifMessagePort
SetPort(port As roMessagePort)

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifIdentity
GetIdentity() As Integer

Playing and Streaming Queues

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object allows you to play a list of video files seamlessly (i.e. without any blank frames or interrupts between one video and the next). You can
link to an instance for seamless video playback or to an instance for seamless video streaming. roStreamQueue roVideoPlayer roMediaStreamer

Object Creation: This object is created with no parameters.

CreateObject("roStreamQueue")

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

File Requirements

Video files must meet the following requirements to work with the object:roStreamQueue

Files must be Transport Stream () formatted..ts
All files in a queue should have identical PIDs.
Files must begin and end with a closed GOP.
Files must have regular PCRs at intervals of 100ms or shorter. Note that the default interval for FFMPEG is 1000ms unless it is
configured for CBR muxing (in which case the interval is set to 20ms). The following is an example of an appropriate command-line tp
remux:

avconv -i clip_short.ts -vcodec copy -acodec copy -muxrate 15M clip_short2.ts

ifSteamQueue

QueueFile(filename As String) As Boolean

Adds the specified video file to the queue.

Loop(loop As Boolean) As Boolean

Specifies that playback/streaming should return to the beginning of the queue once it reaches the end. If and Loop(false) LoopLast(false)
are both called, playback/streaming will stop once the end of the queue is reached. This is also the default behavior.

LoopLast(loop_last As Boolean) As Boolean

Specifies that playback/streaming should loop the last file in the queue once it reaches the end. This method has no effect if is Loop(true)
called as well.

SetPreferredAudio(description As String) As Boolean

Chooses a video stream from the video input based on the in the passed string.parameters

SetPreferredVideo(description As String) As Boolean

Chooses an audio stream from the video input based on the in the passed string.parameters

NextFile(a As Boolean) As Boolean

Start() As Boolean

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type to the attached message port. An event is raised whenever the end of the queue is reached. roStreamQueueEvent

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifIdentity

GetIdentity() As Integer

Returns a unique number that can be used to identify when events originate from this object.

Note

http://docs.brightsign.biz/display/DOC/roVideoPlayer#roVideoPlayer-preferred_streams
http://docs.brightsign.biz/display/DOC/roVideoPlayer#roVideoPlayer-preferred_streams

Playing and Streaming Queues

To use as a streaming playlist, include it as the source component in an call. For video playback, roStreamQueue roMediaStreamer.SetPipeline()
use an instance as the destination component in the call.roVideoPlayer SetPipeline()

Example (roVideoPlayer)
q=createobject("rostreamqueue")
q.queuefile("sd:/Test_Count_Up_Blue_Frames.ts")
q.queuefile("sd:/Test_Count_Up_Green_Frames.ts")
q.loop(true)
c=createobject("romediastreamer")
r=createobject("rorectangle",0,0,1920,1080)
v=createobject("rovideoplayer")
v.setrectangle(r)
c.setpipeline([q, v])
c.start()

Example (roMediaStreamer)
queue = CreateObject("roStreamQueue")
queue.queueFile("file1.ts")
queue.queueFile("file2.ts")
queue.loop(true)
m = CreateObject("roMediaStreamer")
m.setpipeline([queue, "udp://239.0.156.101:5000/?maxbitrate=0"])
m.Start()

roTextField

ON THIS PAGE

ifTextField
Cls() As Void
GetWidth() As Integer
GetHeight() As Integer
SetCursorPos(x As Integer, y As Integer) As Void
GetValue() As Integer

ifStreamSend
SendByte(byte As Integer) As Void
SendLine(string As String) As Void
SendBlock(string As Dynamic) As Void
SetSendEol(string As String) As Void

Printing a Text Field

The interface has been deprecated. We recommend using the interface instead.ifIdentity ifUserData

Important

We strongly suggest appending the "maxbitrate=0" parameter to UDP streams when using This prevents the roStreamQueue. roMedia
instance from rate-limiting an stream that is already running at a precise, correct rate.Streamer roStreamQueue

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

A text field represents an area of the screen that can contain arbitrary text. This feature is intended for presenting diagnostic and usage
information. Use the object to generate text for user interfaces and signage.roTextWidget

Object Creation: The object is created with several parameters:

CreateObject("roTextField", xpos As Integer, ypos As Integer, width_in_chars As Integer,
height_in_chars As Integer, metadata As Object)

xpos: The horizontal coordinate for the top left of the text field.

ypos: The vertical coordinate for the top left of the text field. The top of the screen is equivalent to zero.

width_in_chars: The width of the text field in character cells.

height_in_chars: The height of the text field in character cells.

metadata: An optional containing extra parameters for the text field. You can pass zero if you do not require this.roAssociativeArray

The metadata associative array supports the following extra parameters:

"CharWidth": The width of each character cell in pixels.
"CharLength": The height of each character cell in pixels.
"BackgroundColor": The background color of the text field as an integer specifying eight bits (for each) for red, green and blue in the form
&Hrrggbb.
"TextColor": The color of the text as an integer specifying eight bits (for each) for red, green and blue in the form &Hrrggbb.
"Size": An alternative to "CharWidth" and "CharLength" for specifying either normal size text (0) or double-sized text (1).

ifTextField

Cls() As Void

Clears the text field.

GetWidth() As Integer

Returns the width of the text field

GetHeight() As Integer

Returns the height of the text field.

SetCursorPos(x As Integer, y As Integer) As Void

Moves the cursor to the specified position. Subsequent output will appear at this position.

GetValue() As Integer

Returns the value of the character currently under the cursor.

ifStreamSend

SendByte(byte As Integer) As Void

Writes the character indicated by the specified number at the current cursor position within the text field. It then advances the cursor.

SendLine(string As String) As Void

Note

In TV modes, a border around the screen may not be displayed due to overscanning. You may want to use the object roVideoMode
functions and to ensure that the coordinates you use will be visible.GetSafeX() GetSafeY()

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Writes the characters specified at the current cursor position followed by the end-of-line sequence.

SendBlock(string As Dynamic) As Void

Writes the characters specified at the current cursor position and advances the cursor to one position beyond the last character. This method can
support either a string or an . If the block is a string, any null bytes will terminate the block. roByteArray

SetSendEol(string As String) As Void

Sets the sequence sent at the end of a SendLine() value. You should leave this at the default ASCII value of 13 (Carriage Return) for normal use.
If you need to change this value to another non-printing character, use the .chr global function

Printing a Text Field

As with any object that implements the interface, a text field can be written to using the PRINT #textfield syntax. See the example ifStreamSend
below for more details.

It is also possible to write to a text field using the syntax PRINT #textfield, @pos, where is the character position in the . For example, pos textfield
if your object has 8 columns and 3 rows, writing to position 17 writes to row 3, column 2 (positions 0-7 are in row 1; positions 8-15 are in textfield
row 2; and positions 16-23 are in the last row).

When output reaches the bottom of the text field, it will automatically scroll.

Example
meta = CreateObject("roAssociativeArray")
meta.AddReplace("CharWidth", 20)
meta.AddReplace("CharLength", 32)
meta.AddReplace("BackgroundColor", &H101010) ' Dark grey
meta.AddReplace("TextColor", &Hffff00) ' Yellow
vm = CreateObject("roVideoMode")
tf = CreateObject("roTextField", vm.GetSafeX(), vm.GetSafeY(), 20, 20, meta)
print #tf, "Hello World"
tf.SetCursorPos(4, 10)
print #tf, "World Hello"

roTextWidget

ON THIS PAGE

ifTextWidget
PushString(str As String) As Boolean
PopStrings(number_of_string_to_pop As Integer) As Boolean
GetStringCount() As Integer
Clear() As Boolean
SetStringSource(file_path As String) As Boolean
SetAnimationSpeed(speed As Integer) As Boolean
SetSeparator(separator As String) As Boolean
SetSyncManager(domain As String) As Boolean
SetMultiscreen(offset As Integer, size As Integer, ip_address As String, port As Integer) As Boolean

ifWidget
Show() As Boolean
Hide() As Boolean

Note

The ifStreamSend interface is also described in the section documenting the various file objects. The interface is described again here
in a manner more specific to the roTextField object.

SetForegroundColor(color As Integer) As Boolean
SetBackgroundColor(color As Integer) As Boolean
SetFont(font_filename As String) As Boolean
SetBackgroundBitmap(bitmap_filename As String, stretch As Boolean) As Boolean
SetBackgroundBitmap(parameters As roAssociativeArray, stretch As Boolean) As Boolean
SetSafeTextRegion(region As roRectangle) As Boolean
SetRectangle(r As roRectangle) As Boolean
GetFailureReason() As String

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is used to display text on the screen.

Object Creation: This object is created using one of two variants.

Option 1
CreateObject("roTextWidget", r As roRectangle, line_count As Integer, text_mode As Integer,
pause_time As Integer)

r : An instance that contains the textroRectangle
line_count: The number of lines of text to show within the rectangle

text_mode: The animation characteristics of the text:

0: An animated view similar to teletype
1: Static text
2: Simple text with no queue of strings
3: Scrolling ticker (strings are separated with a diamond by default; the separator can be modified using the SetSeparator()
method). Note that this option is not available for LSx22, HDx20, or HDx10 models.

pause_time: The length of time each string is displayed before displaying the next string. This does not apply to text mode 2 or 3
because the strings on screen are updated immediately.

Option 2
CreateObject("roTextWidget", r As roRectangle, line_count As Integer, text_mode As Integer,
parameters As roAssociativeArray)

r: An instance that contains the textroRectangle
line_count: The number of lines of text to show within the rectangle

text_mode: The animation characteristics of the text:

0: An animated view similar to teletype
1: Static text
2: Simple text with no queue of strings
3: Scrolling ticker (strings are separated with a diamond by default; the separator can be modified using the SetSeparator()
method). Note that this option is not available for LSx22, HDx20, or HDx10 models.

parameters: An associative array that can include the following values:

LineCount: The number of lines of text to show within the rectangle.

TextMode: The animation characteristics of the text:

0: An animated view similar to teletype
1: Static text
2: Simple text with no queue of strings
3: Scrolling ticker (strings are separated with a diamond by default; the separator can be modified using the SetSepara

 method). Note that this option is not available for LSx22, HDx20, or HDx10 models.tor()

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

PauseTime: The length of time each string is displayed before displaying the next string. This does not apply to text mode 2 or
3 because the strings on screen are updated immediately.
Rotation: The rotation of the text within the widget (note that the coordinates and dimensions of the rectangle itself are not
rotated):

0: 0 degrees
1: 90 degrees. This value can also be represented in degrees (90) or radians (.5).
2: 180 degrees. This value can also be represented in degrees (180) or radians ().
3: 270 degrees. This value can also be represented in degrees (270) or radians (1.5).

Alignment: The alignment of the text:

0: Left
1: Center
2: Right

ifTextWidget

PushString(str As String) As Boolean

Adds the string to the list of strings to display in modes 0, 1, and 3. Strings are displayed in order, and when the end is reached, the object loops,
returning to the beginning of the list. In mode 2, the string is displayed immediately.

PopStrings(number_of_string_to_pop As Integer) As Boolean

Pops strings off the front of the list (using "last in, first out" ordering) in modes 0, 1, and 3. This occurs the next time the widget wraps so that
strings can be added to and removed from the widget seamlessly. In mode 2, the string is cleared from the widget immediately.

GetStringCount() As Integer

Returns the number of strings that will exist once any pending pops have taken place.

Clear() As Boolean

Clears the list of strings, leaving the widget blank and able to accept more calls.PushString()

SetStringSource(file_path As String) As Boolean

Displays the text file at the specified path as a single, continuous string. This method is only applicable to text mode 3 (scrolling ticker). When the
end of the file is reached, the text widget loops to the beginning, using a diamond symbol as the separator.

SetAnimationSpeed(speed As Integer) As Boolean

Sets the speed at which animated text displays. This method is applicable to text modes 0 and 3 only:

Mode 0: The default speed value is 10000. Setting an integer above this value decreases the speed of the teletype-style ticker: For
example, specifying a value of 20000 will decrease the default speed at which text displays by half, while a value of 5000 will double the
default speed.
Mode 3: The default speed value is 10000. Because the speed of a scrolling ticker is measured in pixels per second (PPS), the speed
must be a multiple of the current framerate, or else it will be rounded down to the nearest multiple (for example, a framerate of 60p will

Tip

Modes 0, 1, and 3 are useful for displaying RSS feeds and ticker-type text. However, for dynamic data where immediate screen
updates are required, mode 2 may be more appropriate. Mode 2 allows text to be drawn immediately to the screen.

Note

Text-mode 3 (scrolling ticker) supports both right-to-left and left-to-right (e.g. Arabic, Hebrew) scrolling modes, depending on the
language of the first string or file added to the widget. To change the scrolling direction, you will first need to remove all strings from the
ticker.

Note

Adding too many strings without popping them from the stack will cause PushString() to return False (the exact number depends on the
font size for each string). The maximum recommended number of stored strings is 64.

honor PPS values of 60, 120, 180, etc.). The software determines the speed of the scrolling ticker by performing the following calculation
on the passed parameter:speed
PPS = (speed * 60) / 10000

SetSeparator(separator As String) As Boolean

Changes the separator between strings. The default diamond separator will be replaced by the contents of the passed string. This method
applies to Text Mode 3 (smooth scrolling ticker) only. The following strings indicate special symbols: ":diamond:", ":circle:", ":square:".

SetSyncManager(domain As String) As Boolean

Specifies an domain to use when executing the call. When this method is called, it creates an internal dom roSyncManager SetMultiscreen()
ain that is based on the existing domain and uses the same network parameters. We recommend using this method instead of roSyncManager
passing a multicast IP address and port to the method itself.SetMultiscreen()

SetMultiscreen(offset As Integer, size As Integer, ip_address As String, port As Integer) As Boolean

Displays a smooth scrolling ticker across multiple screens. To specify network synchronization parameters, you can either call the SetSyncMana
 method first or pass the optional and values to the method (calling is ger() ip_address port SetMultiscreen() SetSyncManager()

preferred). If you use , do not specify the / ; doing so may lead to unexpected behavior.SetSyncManager() ip_address port

The master screen is designated as the instance with the rightmost offset of all the players in the multiscreen array; all and PushString() Show
 calls (as well as any other changes) must be made on the master instance. Slave instances of the text widget will remain blank until the ()

master starts. This method requires the following parameters:

offset: The offset (in pixels) of the display in the multiscreen array. For example, using an offset of 1920 in a two-screen array of
1920x1080 screens would specify this player as the right-hand (master) display.
size: The total width (in pixels) of the multiscreen array. For example, defining a size of 3840 would specify a two-screen array of
1920x1080 screens.
ip_address: A string specifying the multicast IP address for the PTP synchronization process (e.g. "239.192.0.0")

port: A string specifying the multicast port for the PTP synchronization process (e.g. "1234").

ifWidget

Show() As Boolean

Displays the widget. After creation, the widget is hidden until Show() is called.

Hide() As Boolean

Hides the widget.

SetForegroundColor(color As Integer) As Boolean

Sets the foreground color in ARGB format. The top 8 bits are "alpha" parameters. Zero is equivalent to fully transparent and 255 to fully non-
transparent.

Hex color values should be converted to integers before being passed to this method (e.g. the value should be passed &hFFFFFFFF
as 4294967295). You can use the method (available in the) to convert a hex string to an integer.HexToInteger() core library extension

SetBackgroundColor(color As Integer) As Boolean

Sets the background color in ARGB format. The top 8 bits are "alpha" parameters. Zero is equivalent to fully transparent and 255 to fully non-
transparent. This feature allows for effects similar to subtitles. For example, you can create a semi-transparent black box containing text over
video.

Hex color values should be converted to integers before being passed to this method (e.g. the value should be passed &hFFFFFFFF
as 4294967295). You can use the method (available in the) to convert a hex string to an integer.HexToInteger() core library extension

Note

Players can support more than one multiscreen ticker at a time.

Note

Foreground alpha values are currently unsupported with ticker mode 3 (scrolling ticker) and will be ignored by this method. This
behavior may change in future firmware versions.

SetFont(font_filename As String) As Boolean

Specifies a custom font for the widget using a TrueType font file from local storage (e.g. "SD:/ComicSans.ttf").

SetBackgroundBitmap(bitmap_filename As String, stretch As Boolean) As Boolean

Sets the background bitmap image. If stretch is True, then the image is stretched to the size of the widget.

SetBackgroundBitmap(parameters As roAssociativeArray, stretch As Boolean) As Boolean

Sets the background bitmap image. If is True, then the image is stretched to the size of the widget. The associative array can contain the stretch
following parameters:

Filename: The name of the image file

EncryptionAlgorithm: The file-encryption algorithm. Currently the options are "AesCtr" and "AesCtrHmac".

EncryptionKey: The key to decrypt the image file. This is a byte array consisting of 128 bits of key, followed by 128 bits of IV.

SetSafeTextRegion(region As roRectangle) As Boolean

Specifies the rectangle within the widget where the text can be drawn safely.

SetRectangle(r As roRectangle) As Boolean

Changes the size and positioning of the widget rectangle using the passed object.roRectangle

GetFailureReason() As String

Yields additional useful information if a function return indicates an error.

roTextWidgetEvent

ON THIS PAGE

ifWidgetEvent
GetStringId() As Integer

ifUserData
SetUserData(user_data As Object) As Void
GetUserData() As Objecta

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This event object is generated when a string or surface leaves the screen area of an instance.roTextWidget

ifWidgetEvent

GetStringId() As Integer

Returns the ID of the string or surface that has disappeared from the screen.

ifUserData

Note

See the section in the entry for details on displaying encrypted images.Image Decryption roImagePlayer

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/display/DOC/roImagePlayer#roImagePlayer-image_decryption

SetUserData(user_data As Object) As Void

Sets the user data.

GetUserData() As Objecta

Returns the user data that has previously been set via (on either the event or source object). It will return Invalid if no data has SetUserData()
been set.

roTouchScreen

ON THIS PAGE

ifTouchScreen
SetResolution(x As Integer, y As Integer) As Void
AddRectangleRegion(x As Integer, y As Integer, w As Integer, h As Integer, region_id As Integer) As Void
AddCircleRegion(x As Integer, y As Integer, radius As Integer, region_id As Integer) As Void
ClearRegions() As Void
GetDeviceName() As String
SetCursorPosition(x As Integer, y As Integer) As Void
SetCursorBitmap(filename As String, x As Integer, y As Integer) As Void
EnableCursor(enable As Boolean) As Void
EnableRollover(region_id As Integer, on_image As String, off_image As String, cache_image As Boolean, image_player As
Object) As Void
EnableRegion(region_id As Integer, enabled As Boolean) As Void
SetRollOverOrigin(region_id As Integer, x As Integer, y As Integer) As Void
IsMousePresent() As Boolean
SetMouseRotation(rotation As Integer) As Boolean
EnableSerialTouchscreen(a As Integer) As Boolean
SetSerialTouchscreenConfiguration(a As String) As Boolean
GetDiagnosticInfo() As String

ifSetMessagePort
SetPort(port As roMessagePort)

ifTouchScreenCalibration
StartCalibration() As Boolean
GetCalibrationStatus() As Integer
GetDiagnosticInfo() As String
ClearStoredCalibration() As Boolean
StartEventLogging() As Boolean
StopEventLogging() As Boolean
ClearEventLogs() As Boolean
SetCalibrationRanges(x-min As Integer, x-max As Integer, y-min As Integer, y-max As Integer) As Boolean

ifSerialControl
SetBaudRate(baud_rate As Integer) As Boolean
NotUsed1(a As String)
SetMode(a As String) As Boolean
NotUsed2(a As Boolean) As Boolean

Examples

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object accepts inputs from touchscreen panels or mice. For each recognized input, the object will generate an object. roTouchEvent

Not all touchscreens are supported, but we are always working to extend driver support. Please see this for a full list of supported FAQ
touchscreens, or contact if you want to know whether a specific touch-screen model is supported. The sales@brightsign.biz roTouchScreen
object responds to the clicks of a USB mouse in the same way it responds to touch events on a touchscreen.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
http://support.brightsign.biz/entries/262256-Which-touchscreens-can-I-use-with-BrightSign-players-
mailto:sales@rokulabs.com

1.
2.

3.
1.
2.
3.

4.

To set up touchscreen/mouse interactivity, follow this outline:

Create an instance.roTouchScreen
Use to specify an instance to receive the events.SetPort() roMessagePort roTouchScreen
Define one or more touch regions.

A touch region may be rectangular or circular.
When a touch or click occurs anywhere inside the area of a touch region, an event will be sent to the message port.
If touch regions overlap such that a click or touch hits multiple regions, an event for each affected region will be sent.

Process the events.

The object supports rollover regions. Rollovers are based around touch regions. When a rectangular or circular region is added, it roTouchScreen
defaults to having no rollover. You can use the method to add an and image for a region. Whenever the mouse EnableRollover() on off
cursor is within that region, the image is displayed. In all other cases, the image is displayed. This allows buttons to be highlighted as the on off
mouse cursor moves over them.

ifTouchScreen

SetResolution(x As Integer, y As Integer) As Void

AddRectangleRegion(x As Integer, y As Integer, w As Integer, h As Integer, region_id As Integer) As Void

Adds a rectangular touch region to the screen. The region_id is used to associate the touch region with events and to link the roTouchEvent
region with rollover images.

AddCircleRegion(x As Integer, y As Integer, radius As Integer, region_id As Integer) As Void

Adds a circular touch region to the screen. The is used to associate the touch region with events and to link the region region_id roTouchEvent
with rollover images.

ClearRegions() As Void

Clears the list of regions added using or so that any contacts in those regions no longer AddRectangleRegion() AddCircleRegion()
generate events. This call has no effect on the rollover graphics.

GetDeviceName() As String

SetCursorPosition(x As Integer, y As Integer) As Void

SetCursorBitmap(filename As String, x As Integer, y As Integer) As Void

Specifies a BMP or PNG file as the mouse cursor icon. This method also accepts a "hot spot" (i.e. the point within the icon rectangle that will
trigger events when the mouse is clicked) as a set of coordinates. The icon can be a rectangle of any width or height. The colors are specified x,y
internally in YUV (6-4-4 bits respectively), but pixels in the passed image file can be one of 16 different colors. These colors are 16 bits, with 14
bits of color and 2 bits of alpha. If you use all of the alpha levels on all shades, then you limit the number of available shades to five (five shades
at three alpha levels plus one fully transparent color gives 16).

EnableCursor(enable As Boolean) As Void

Displays a cursor on screen if passed True.

EnableRollover(region_id As Integer, on_image As String, off_image As String, cache_image As Boolean, image_player As Object) As Void

Enables a rollover for a touch region. This method accepts the ID of the touch region, as well as two strings specifying the names of the and on off
bitmap images, a cache setting, and the image player that draws the rollover. The parameter simply tells the script whether to cache_image
keep the bitmaps loaded in memory or not. This setting uses up memory very quickly, so we recommend that normally be set to 0.cache_image

EnableRegion(region_id As Integer, enabled As Boolean) As Void

Enables or disables a rollover region. This method accepts the ID of the touch region, as well as a Boolean value (True or False). The rollover
regions default to "enabled" when created, but you can set up all of the regions at the start of your script and then enable regions as required.

SetRollOverOrigin(region_id As Integer, x As Integer, y As Integer) As Void

Changes the origin so that more (or less) of the screen changes when the mouse rolls in and out of the region. This means that bitmaps that are
larger than the region can be drawn. The default requirement is that rollover bitmaps be the same size and position as the touch region. Note that
the bitmap is square for circular regions. The default origin for circular regions is [x - r] [y – r], where x y is the center of the circle, and r is the , ,
radius.

IsMousePresent() As Boolean

Returns True if a relative pointing device is attached to the player. This does not work for absolute devices like touchscreens.

SetMouseRotation(rotation As Integer) As Boolean

Transforms mouse-movement inputs to account for screen rotation. This method can accept the following integers:

0: Inputs are unchanged (i.e. landscape orientation).
1, 90: Rotated 90 degrees (i.e. clockwise portrait orientation).
2, 180: Rotated 180 degrees.
3, 270: Rotated 270 degrees (i.e. counter-clockwise portrait orientation).

EnableSerialTouchscreen(a As Integer) As Boolean

SetSerialTouchscreenConfiguration(a As String) As Boolean

GetDiagnosticInfo() As String

Returns an HTML string with captured information describing hardware that was connected and events that occurred during the calibration
process. This method is used by the calibration script to diagnose touchscreen issues.

ifSetMessagePort

SetPort(port As roMessagePort)

Posts messages of type and to the attached message port.roTouchEvent roTouchCalibrationEvent

ifTouchScreenCalibration

StartCalibration() As Boolean

GetCalibrationStatus() As Integer

GetDiagnosticInfo() As String

ClearStoredCalibration() As Boolean

StartEventLogging() As Boolean

StopEventLogging() As Boolean

ClearEventLogs() As Boolean

SetCalibrationRanges(x-min As Integer, x-max As Integer, y-min As Integer, y-max As Integer) As Boolean

Overrides the screen range values provided by the touchscreen. This method is useful when the entirety of the video output is not being
displayed on the touch surface. Practical use of this method usually requires a custom calibration script, appropriate images, and a calibration
setting matched to a particular setup.

ifSerialControl

SetBaudRate(baud_rate As Integer) As Boolean

Sets the baud rate of the device. The supported baud rates are as follows: 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600,
19200, 38400, 57600, 115200, 230400.

NotUsed1(a As String)

SetMode(a As String) As Boolean

NotUsed2(a As Boolean) As Boolean

Examples

This script loops a video and waits for a mouse click or touchscreen input. It outputs the coordinates of the click or touch to the shell if it is located
within the defined region.

v=CreateObject("roVideoPlayer")
t=CreateObject("roTouchScreen")
p=CreateObject("roMessagePort")

v.SetPort(p)
t.SetPort(p)
v.SetLoopMode(True)
v.PlayFile("testclip.mp2v")

t.AddRectangleRegion(0,0,100,100,2)

loop:
 msg=Wait(0, p)
 print "type: ";type(msg)
 print "msg=";msg
 if type(msg)="roTouchEvent" then
 print "x,y=";msg.GetX();msg.GetY()
 endif
 goto loop:

This script includes mouse support.

t=CreateObject("roTouchScreen")
t.SetPort(p)
REM Puts up a cursor if a mouse is attached
REM The cursor must be a 16 x 16 BMP
REM The x,y position is the "hot spot" point
t.SetCursorBitmap("cursor.bmp", 16, 16)
t.SetResolution(1024, 768)
t.SetCursorPosition(512, 389)
REM
REM Pass enable cursor display: TRUE for on, and FALSE for off
REM The cursor will only enable if there is a mouse attached
REM
t.EnableCursor(TRUE)

This script includes a rollover region and mouse support.

img=CreateObject("roImagePlayer")
t=CreateObject("roTouchScreen")

p=CreateObject("roMessagePort")
t.SetPort(p)

t.SetCursorBitmap("cursor.bmp", 16, 16)
t.SetResolution(1024, 768)
t.SetCursorPosition(512, 389)
t.EnableCursor(1)

img.DisplayFile("\menu.bmp")

REM Adds a rectangular touch region
REM Enables rollover support for that region
REM Sets the rollover origin to the same position as the touch region REM
t.AddRectangleRegion(0, 0, 100, 100, 1)
t.EnableRollOver(1, "on.bmp", "off.bmp", true, img)
t.SetRollOverOrigin(1, 0, 0)

roTouchEvent, roTouchCalibrationEvent

ON THIS PAGE

ifInt
GetInt() As Integer
SetInt(a As Integer)

ifPoint
GetX() As Integer
GetY() As Integer
SetX(a As Integer)
SetY(a As Integer)

ifEvent
GetEvent() As Integer
SetEvent(a As Integer)

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

The object is generated by the object whenever a touch or mouse event is detected within a defined region.roTouchEvent roTouchScreen

ifInt

GetInt() As Integer

Retrieves the region ID of the event.

SetInt(a As Integer)

Sets the region ID of the event.

ifPoint

The interface is not available on the object.ifPoint roTouchCalibrationEvent

GetX() As Integer

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Retrieves the x coordinate of the mouse/touch event.

GetY() As Integer

Retrieves the y coordinate of the mouse/touch event.

SetX(a As Integer)

Sets the x coordinate of the event.

SetY(a As Integer)

Sets the y coordinate of the event.

ifEvent

The interface is not available on the object.ifEvent roTouchCalibrationEvent

GetEvent() As Integer

SetEvent(a As Integer)

roVideoEvent, roAudioEvent

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

Video and audio events are declared as separate classes. Events can have one of the following values, which are retrieved using the GetInt()
method:

3 Playing The current media item has started playing.

8 MediaEnded The media item has completed playback.

12 TimeHit A particular timecode has been reached.
See the entry on Timecode Events for more
details.

13 Overlay_Playing An roAudioPlayerMx instance has begun
playback of an audio file.

14 Overlay_MediaEnded An roAudioPlayerMx instance has
completed playback of an audio file.

15 Overlay_TimeHit The EventTimeStamp of an roAudioPlayerM
x instance has been been reached.

16 MediaError A media error has been detected. As
opposed to code 30, this event usually
indicates transient errors (e.g. low buffer
levels).

17 Overlay_MediaError A media error has been detected during roA
udioPlayerMx playback.

18 FadingOut The current media item has completed
fading out. See the roVideoPlayer.SetFade()
entry for more details.

19 DecoderEOS

20 Overlay_FadingOut The FadeOutLocation of an roAudioPlayerMx
instance has been reached.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/display/DOC/roVideoPlayer#roVideoPlayer-timecode_events

21 Overlay_DecoderEOS

26 Underflow The stream seems to be underflowing. This
event usually indicates that the streaming
latency is set too low. It will be generated
every few seconds as long as underflow is
detected.

30 MediaError_NotStarted A fatal error has been encountered while
attempting to start playback (e.g. the video
format is not supported).

ifInt

GetInt() As Integer

Returns the event ID as an integer value.

SetInt(value As Integer) As Void

Sets the integer value.

ifUserData

SetUserData(user_data As Object) As Void

Sets the user data.

GetUserData() As Object

Returns the user data that has previously been set via (on either the event or source object). It will return Invalid if no data has SetUserData()
been set.

ifSourceIdentity

GetSourceIdentity() As Integer

SetSourceIdentity() As Integer

ifData

GetData() As Integer

SetData(a As Integer)

Example
vp_msg_loop:
 msg=Wait(tiut, p)
 if type(msg)="roVideoEvent" then

Note

The may return more specific information about media error states.Diagnostic Web Server log

Note

The interface has been deprecated. We recommend using the interface instead.ifSourceIdentity ifUserData

https://docs.brightsign.biz/display/DOC/Diagnostic+Web+Server#DiagnosticWebServer-log
https://docs.brightsign.biz/display/DOC/Diagnostic+Web+Server#DiagnosticWebServer-log

 if debug then print "Video Event";msg.GetInt()
 if msg.GetInt() = 8 then
 if debug then print "VideoFinished"
 retcode=5
 return
 endif
 else if type(msg)="roGpioButton" then
 if debug then print "Button Press";msg
 if escm and msg=BM then retcode=1:return
 if esc1 and msg=B1 then retcode=2:return
 if esc2 and msg=B2 then retcode=3:return
 if esc3 and msg=B3 then retcode=4:return
 else if type(msg)="rotINT32" then
 if debug then print "TimeOut"
 retcode=6
 return
 endif

 goto vp_msg_loop

roVideoInput

ON THIS PAGE

ifVideoInput
GetStandards() As roArray
GetInputs() As roArray
SetStandard(standard As String) As Boolean
GetCurrentStandard() As String
SetInput(input As String) As Boolean
GetCurrentInput() As String
GetControls() As roArray
SetControlValue(control_name As String, value As Integer) As Boolean
GetCurrentControlValue(control_name As String) As roAssociativeArray
GetFormats() As Object
SetFormat(a As String, b As Integer, c As Integer) As Boolean
GetCurrentFormat() As String

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object allows playback of HDMI input or video provided by a video capture dongle. Note that the methods do not apply to HDMI ifVideoInput
input, which can be achieved by passing an unmodified instance to the method (see below for examples).roVideoInput roVideoPlayer.PlayFile()

Object Creation: is created with no parameters:roVideoInput

CreateObject("roVideoInput")

ifVideoInput

GetStandards() As roArray

GetInputs() As roArray

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

These return an array of strings describing the various inputs and video standards that the video capture device supports. The following are the
possible standards that can be returned: PAL-D/K, PAL-G, PAL-H, PAL-I, PAL-D, PAL-D1, PAL-K, PAL-M, PAL-N, PAL-Nc, PAL-60, SECAM-B
/G, ECAM-B, SECAM-D, SECAM-G, SECAM-H, SECAM-K, SECAM-K1, SECAM-L, SECAM-LC, SECAM-D/K, NTSC-M, NTSC-Mj, NTSC-443,
NTSC-Mk, PAL-B and PAL-B1. Inputs returned are s-video and composite.

SetStandard(standard As String) As Boolean

GetCurrentStandard() As String

SetInput(input As String) As Boolean

GetCurrentInput() As String

Use the above to get and set the input and video standard.

GetControls() As roArray

Returns the possible controls on the input. These include "Brightness," "Contrast," "Saturation," "Hue," and others.

SetControlValue(control_name As String, value As Integer) As Boolean

Sets the value of the specified control.

GetCurrentControlValue(control_name As String) As roAssociativeArray

Returns an associative array with 3 members: "Value," "Minimum," and "Maximum." "Value" is the current value, and the possible range is
specified by "Minimum" and "Maximum."

GetFormats() As Object

SetFormat(a As String, b As Integer, c As Integer) As Boolean

GetCurrentFormat() As String

This script uses the HDMI Input as the video source to create a full-screen display.

v = CreateObject("roVideoPlayer")
i = CreateObject("roVideoInput")
p = CreateObject("roMessagePort")

vm = CreateObject("roVideoMode")
vm.SetMode("1920x1080x60p")

r = CreateObject("roRectangle", 0, 0, 1920, 1080)
v.SetRectangle(r)

v.PlayFile(i)

This script uses the video capture dongle as the video source to create a full-screen display.

v=CreateObject("roVideoPlayer")
i=CreateObject("roVideoInput")
p=CreateObject("roMessagePort")

vm=CreateObject("roVideoMode")
vm.SetMode("1280x720x60p")

r = CreateObject("roRectangle", 0, 0, 1280, 720)
v.SetRectangle(r)

i.SetInput("s-video")
i.SetStandard("ntsc-m")

v.PlayFile(i)

roVideoMode

ON THIS PAGE

ifVideoMode
SetMode(mode As String) As Boolean
SetModeForNextBoot(video_mode As String) As Boolean
GetModeForNextBoot() As String
GetBestMode(connector As String) As String
GetMode() As String
GetAvailableModes() As Array
GetActiveMode() As AssociativeArray
GetConfiguredMode() As AssociativeArray
GetFPS() As Integer
SetDecoderMode(decoder As String, timeslice_mode As String, z_order As Integer, friendly_name As String,
enable_mosaic_deinterlacer As Boolean) As Boolean
GetDecoderModes() As roArray
Set3dMode(mode As Integer) As Boolean
Screenshot(parameters As roAssociativeArray) As Boolean
GetResX() As Integer
GetResY() As Integer
GetVideoResX() As Integer
GetVideoResY() As Integer
GetOutputResX() As Integer
GetOutputResY() As Integer
GetSafeY() As Integer
GetSafeWidth() As Integer
GetSafeHeight() As Integer
SetGraphicsZOrder(order As String) As Boolean
PauseGraphics(timeout_in_ms As Integer) As Boolean
ResumeGraphics() As Boolean
SetImageSizeThreshold(parameters As roAssociativeArray) As Boolean
AdjustGraphicsColor(parameters As roAssociativeArray) As Boolean
ConfigureHdmiInput(parameters As roAssociativeArray) As Boolean
GetHdmiOutputStatus() As roAssociativeArray
GetHdmiInputStatus() As roAssociativeArray
GetCompositorCRC() As Integer
GetTxHDCPStatus() As roAssociativeArray
ForceHDCPOn(force As Boolean) As Boolean
DisableHDCPRepeater(disable As Boolean) As Boolean
SetBackgroundColor(color As Integer) As Boolean
SetPowerSaveMode(power_save_enable As Boolean) As Boolean

IsAttached(connector As String) As Boolean
HdmiAudioDisable(disable As Boolean) As Boolean
SetMultiscreenBezel(x_pct As Integer, y_pct As Integer) As Boolean
SaveEdids(filename As String) As Boolean
GetEdidIdentity(video_connector As Boolean) As roAssociativeArray
SetMpcdi(parameters As roAssociativeArray) As Boolean
SetSyncDomain(domain As String) As Boolean

ifMessagePort
SetPort(port As Object) As Void

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

"Auto" Video Mode
Selecting Decoders for Playback

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object allows you to configure resolution and other video output settings. The same video resolution is applied to all video outputs on a
BrightSign player. Video or images that are subsequently decoded and displayed will be scaled (using the hardware scalar) to this output
resolution if necessary.

Object Creation: The object is created with no parameters.roVideoMode

CreateObject("roVideoMode")

The object generates and event objects whenever the hotplug status of the HDMI roVideoMode roHdmiInputChanged roHdmiOutputChanged
input or output changes.

ifVideoMode

SetMode(mode As String) As Boolean

Sets the video output mode. See for a list of supported video modes. If the specified video mode is different from the current video mode of here
the object, the unit will reboot and change the video mode to the new setting during system initialization. This method also accepts as a "auto"
mode parameter. The following optional parameters can be appended to the string

<resolution>:<color_space>:<depth>bit: Sets the for HDMI output. For example, to output 4Kp60 at the 4:2:0 video profile
color space with 10 bits of depth, you would pass the following string: " .3840x2160x60p:420:10bit"

<resolution>:preferred: Enables the preferred video mode setting. This instructs the player to only use the video mode if the
display EDID indicates that it is supported. Otherwise, the output will default to "auto" mode. If no EDID is detected at bootup, the player
will output the preferred video mode. If an HDMI hotplug event occurs afterward, then the player will perform the preferred video-mode
check again. The flag currently ignores video profile settings (i.e. color space and bit depth).:preferred

<resolution>:fullres: Enables full-resolution graphics. This instructs the player to match the graphics plane to the video mode;
otherwise, video modes larger than 1920x1200 upscale the graphics plane to match the video output. See for more details and a list here
of supported modes/models.

<resolution>:gfxmemlarge: Enables the large graphics memory configuration for XTx43 models (at the expense of general-
purpose memory). This setting requires a reboot to take effect.
<resolution>:gfxmemdefault: Resets the graphics memory configuration to default. This setting requires a reboot to take effect.

<resolution>:rgb:<range>: Sets the color space to RGB. The optional parameter can be one of the following values:<range>

Note

 If the mode is used with HTML applications, we recommend enabling the setting fullres graphics-intensive gfxmemlarge
as well.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/display/DOC/Supported+Video+Modes
https://docs.brightsign.biz/pages/viewpage.action?pageId=2687001#roVideoMode-auto_video_mode
http://support.brightsign.biz/entries/67089524-What-4K-video-profiles-can-4Kx42-players-output-over-HDMI-
http://docs.brightsign.biz/display/DOC/Full-Resolution+Graphics

auto: The default setting. Over HDMI, the player will output RGB Full for VESA modes and RGB Limited for TV modes. Over
DVI, the player will output RGB Full for all modes.
fullrange: The RGB Full (0-255) setting

limitedrange: The RGB Limited (16-235) setting

BrightSign hardware has a video anti-aliasing low-pass filter that is set automatically.

SetModeForNextBoot(video_mode As String) As Boolean

Specifies the target video mode of the device the next time it reboots. Once a video mode is specified using , it can only be changed SetMode()
by a device reboot.

GetModeForNextBoot() As String

Returns the target video mode of the device the next time it reboots. The return value is specified with the method.SetModeForNextBoot()

GetBestMode(connector As String) As String

Returns the highest supported , as reported by the display via EDID. The video connector can be specified as or (thesvideo mode "hdmi" "vga"
e values are case sensitive). If the display does not return a resolution value over EDID (or if no display is connected), this method returns a
blank string.

GetMode() As String

Returns the current video mode of the device, which is specified using the method.SetMode()

GetAvailableModes() As Array

Returns all video modes supported by the player as an array of of entries. Each entry is an associative array with the following values:

videomode:(string) A description of the video mode (a full list of modes can be found)here

width:(integer) The width of the video output

height:(integer) The height of the video output

graphicsPlaneWidth:(integer) The width of the graphics plane

graphicsPlaneHeight:(integer) The height of the graphics plane

framerate:(integer) The frame rate of the video output

interlaced:(Boolean) A flag indicating whether the video output is interlaced () or progressive ()true false

overscan:(Boolean) A flag indicating whether the video output is using an overscan setting or not

colorspace:(string) The color space of the video signal ("8bit", "10bit", or "12bit")

colordepth:(string) The color depth of the video signal ("rgb", "yuv420", or "yuv422")

dropframe:(Boolean) A flag indicating whether the video timecode utilizes drop frames

preferred:(Boolean) A flag indicating whether the video mode is the preferred mode, which is configured using the methodSetMode()

GetActiveMode() As AssociativeArray

Returns information about the current video mode as an associative array. All values in the are strings:roAssociativeArray

videomode: The current video mode (e.g. "3840x2160x60p")

colordepth: The current color depth ("8bit", "10bit", or "12bit")

colorspace: The current color space ("rgb", "yuv420", or "yuv422")

preferred: A "true" or "false" string indicating whether the current video mode is the preferred mode, which is set using the SetMode()
 method.

GetConfiguredMode() As AssociativeArray

Returns information about the video mode configured using the method. This method returns an ; see the SetMode() roAssociativeArray GetAva
entry for more details about returned values. If the video mode is set to "auto", this method will return Invalid. ilableModes()

GetFPS() As Integer

Note

In 4K modes, the graphics plane may be smaller than the video plane and output. In these cases, the graphics plane is
upscaled to match the video plane/output.

https://docs.brightsign.biz/display/DOC/Supported+Video+Modes
https://docs.brightsign.biz/display/DOC/Supported+Video+Modes
https://docs.brightsign.biz/pages/viewpage.action?pageId=2687001#roVideoMode-getavailablemodes()
https://docs.brightsign.biz/pages/viewpage.action?pageId=2687001#roVideoMode-getavailablemodes()

Returns the current framerate of the video output.

SetDecoderMode(decoder As String, timeslice_mode As String, z_order As Integer, friendly_name As String, enable_mosaic_deinterlacer As
Boolean) As Boolean

Configures a video decoder for either standard mode or Mosaic mode. In standard mode, a single decoder is used to play a single video; in
Mosaic mode, the decoder can be used to decode multiple videos from different local or remote sources. See the section Selecting Decoders
below for more information on assigning video players to decoders in HTML or BrightScript.

decoder: The video decoder to be used (decoder availability differs by model).

"4K": The 4K decoder (on XTx43, 4Kx42, and XDx33 models only)
"HD1": The first HD decoder
"HD2": The second HD decoder

timeslice_mode: The maximum resolution that the decoder will accept (at framerates up to 60p). If this resolution is the same as the
decoder's maximum resolution limit, the decoder will use standard mode, not Mosaic mode.

"4K": 4096x2160
"HD": 1920x1080
"SD": 720x576
"CIF": 352x288
"QCIF": 176x144

z_order: The z-order of the video window (in standard mode) or group of video windows (in Mosaic mode) relative to the graphics plane:

1: The video window (or group of windows) is positioned in front of the graphics plane.
-1: The video window (or group of windows) is positioned behind the graphics plane.

friendly_name: A human-readable name for referencing the decoder in HTML and scripts

enable_mosaic_deinterlacer: A Boolean value indicating whether Mosaic-mode videos can be interlaced or not. Enabling the
deinterlacer will allow playback of interlaced videos in Mosaic mode, but will reduce the number of Mosaic-mode videos that can be
decoded simultaneously as well.

GetDecoderModes() As roArray

Returns an array of associative arrays, each one corresponding to a single decoder. Each associative array contains the following entries:

decoder_name: The system name of the decoder

friendly_name: The name of the decoder as specified when calling SetDecoderMode()

max_decode_size: The maximum resolution of the decoder, as set by system software. This value can be either "4K" or "HD"

configured_decode_size: The maximum resolution of the decoder that is specified when calling SetDecoderMode()

mode: The current mode of the decoder, which can be either "Regular" or "Mosaic"

usage_count: The number of videos currently being decoded by the decoder

max_usage: The maximum number of videos that can be decoded simultaneously by the decoder. The optimum limits are max_usage
described below; the limit may be lower depending on a number of factors, including interlacing and frame rate.

4K decoder:
1 4K video
2 HD videos
4 SD videos
8 CIF videos
10 QCIF videos

HD decoder:
0 4K videos
1 HD video
3 SD videos
4 CIF videos
5 QCIF videos

Important

Upscaling videos in Mosaic mode currently causes severe performance degradation.

Tip

This configuration can be modified using the method. SetGraphicsZOrder()

https://docs.brightsign.biz/pages/viewpage.action?pageId=2687001#roVideoMode-selecting_decoders
https://docs.brightsign.biz/pages/viewpage.action?pageId=2687001#roVideoMode-setgraphicszorder

mosaic_mode_interlace: The current deinterlacing mode of the decoder, which can be either "Enabled" or "Disabled". This value is
specified when calling .SetDecoderMode()

Set3dMode(mode As Integer) As Boolean

Sets the 3D video output mode, which is specified by passing one the following parameters:

0: Standard mono video (default)
1: Side-by-side stereo video
2: Top-and-bottom stereo video

Screenshot(parameters As roAssociativeArray) As Boolean

Captures a screenshot of the video and graphics layer as a or file. The screenshot is configured by passing an associative array of .jpeg .bmp
parameters to the method:

filename: A string specifying the name and path of the image file that will be saved (e.g. "SD:/myscreenshots/screen.jpg"). If the
specified directory does not exist, the screenshot will fail.
width: An integer specifying the width of the image file.

height: An integer specifying the height of the image file.

filetype : A string determining whether the image is a "JPEG" or "BMP" file type. Note that the file extension (".jpg" or ".bmp") is not

appended to the filename by default and, if needed, should be included in the string.filename

quality: An integer value (between 0 and 100) that determines the image quality of the screenshot. This parameter is set to 50 by
default.
async: An integer value that determines whether the screenshot should be taken synchronously or asynchronously. If set to 0, the
function returns True after the image file has successfully finished writing. If set to 1, the function will return True prior to saving the file,
then return an event once the file has finished writing.roScreenShotComplete
rotation: The rotation of the screenshot image (in degrees). The default value is 0. Accepted values are 0, 90, 180, and 270.

GetResX() As Integer

Returns the current width of the graphics plane.

GetResY() As Integer

Returns the current height of the graphics plane.

GetVideoResX() As Integer

Returns the current width of the video plane.

GetVideoResY() As Integer

Returns the current height of the video plane.

GetOutputResX() As Integer

Returns the width of the display for the current video mode.

GetOutputResY() As Integer

Returns the height of the display for the current video mode.

Note

The default dimensions of the image file is 640x480.

Note

In most cases, the values returned by / , / , and /GetResX() GetResY() GetVideoResX() GetVideoResY() GetOutputResX() GetO
 will be identical. The "GetRes" and "GetVideoRes" values will sometimes differ when using 4K modes if the graphics utputResY()

plane (i.e. "GetRes") remains at 1920x1080, while the video plane (i.e. "VideoRes") expands (e.g. to 3840x2160). The "OutputRes"
value will differ from the other two values when the video output is upscaled: For example, when upscaling from HD to 4K, the
"GetRes" and "GetVideoRes" values will remain at 1920x1080, while the "OutputRes" values will indicate 3840x2160.

GetSafeX() As Integer

Returns the horizontal coordinate for the upper-left corner of the "safe area". For modes that are generally displayed with no overscan, this will be
zero.

GetSafeY() As Integer

Returns the vertical coordinate for the upper-left corner of the "safe area". For modes that are generally displayed with no overscan, this will be
zero.

GetSafeWidth() As Integer

Returns the width of the "safe area." For modes that are generally displayed with no overscan, this will return the same as .GetResX

GetSafeHeight() As Integer

Returns the height of the "safe area." For modes that are generally displayed with no overscan, this will return the same as .GetResY

SetGraphicsZOrder(order As String) As Boolean

Specifies the order of the graphics plane (which includes all graphical elements) in relation to the video plane(s). This method accepts three
parameters:

"front": Places the graphics plane in front of the video plane(s).

"middle": Places the graphics plane between two video planes. This option is only applicable for models that have two video decoders
(e.g. XTx43, XDx33, 4Kx42).
 : Places the graphics plane behind the video plane(s)."back"

If the player is rendering two videos, the and options will always place the graphics plane in front of or behind both video planes. To front back
determine the z-order of video planes in relation to one another, use the and methods provided by the objeToFront() ToBack() roVideoPlayer
ct. The following table shows all possible video and graphics z-order arraignments that can be specified using the methSetGraphicsZOrder()
od and calling the and methods on a "Video1" instance.ToFront() ToBack() roVideoPlayer

SetGraphicsZOrder() front middle back

ToFront()/ToBack() ToFront() ToBack() ToFront() ToBack() ToFront() ToBack()

Z-Order Graphics Graphics Video1 Video2 Video1 Video2

Video1 Video2 Graphics Graphics Video2 Video1

Video2 Video1 Video2 Video1 Graphics Graphics

PauseGraphics(timeout_in_ms As Integer) As Boolean

Suspends graphics compositor updates for the specified number of milliseconds (or until the method is called), up to a ResumeGraphics()
maximum interval of 10 seconds. While the graphics compositor is paused, no visual elements will be updated (except for , HWZ video scrolling

, and off-screen Chromium textures). Use this method to combine , , and operations into a single v-tickers Show() Hide() SetRectangle()
sync update.

ResumeGraphics() As Boolean

Resumes the graphics compositor if it has been paused with the method.PauseGraphics()

SetImageSizeThreshold(parameters As roAssociativeArray) As Boolean

Changes the maximum allowed size for images. Images sizes are measured in bytes using the following formula: image_width *
.image_height * 4

The default image size limit is 35389440 bytes (equivelant to 4096x2160x32bpp) for XTx43, XDx33, and 4Kx42 models and 2621440 bytes
(equivelant to 2048x1280x32bpp) for other models. Displaying images larger than the default value may deplete the graphics memory and cause
a crash, so we recommend testing a script that uses this method thoroughly before deploying it in a production environment. This method accepts
an associative array with the following parameters:

More information about safe areas can be found here:

http://en.wikipedia.org/wiki/Safe_area
http://en.wikipedia.org/wiki/Overscan_amounts

https://docs.brightsign.biz/display/DOC/HTML5+Video#HTML5Video-hwz_video
https://docs.brightsign.biz/display/DOC/roTextWidget#roTextWidget-scrolling_ticker
https://docs.brightsign.biz/display/DOC/roTextWidget#roTextWidget-scrolling_ticker
http://en.wikipedia.org/wiki/Safe_area
http://en.wikipedia.org/wiki/Overscan_amounts

[int] width: The image width value

height[int] : The image height value

ignore[int] : A flag specifying whether the image size limit is enabled (0) or disabled (1)

AdjustGraphicsColor(parameters As roAssociativeArray) As Boolean

Adjusts the video and graphics output of the player using the following parameters, which can be passed to the method as an associative array:
"brightness", "hue", "contrast", "saturation". Each parameter has a default value of 0 and can accept a range of values between -1000 and 1000.

ConfigureHdmiInput(parameters As roAssociativeArray) As Boolean

Configures EDID reporting for the HDMI input. By default, the input EDID includes video modes from the display attached to the HDMI output,
some video modes supported by the player, and support for PCM audio up to 48kHz; it does not report proprietary media codecs that can be
decoded by the device connected to the HDMI output, so you can use this method to announce such support if available at the endpoint. Using
this method to change the default configuration will trigger a reboot on the player. The passed associative array can contain the following
parameters:

[int] MaxSampleRate: The maximum supported PCM audio sampling rate in Hz (e.g. the default sampling rate is 48000)

MaxChannelCount[int] : The number of PCM channels that are advertised over EDID. The default value is 2, which allows for
stereo mixdown. Increasing this value to 6 allows the source to send multichannel PCM.

EnableAC3[int] : A flag specifying whether AC-3 is not supported (0) or supported (1)

EnableEAC3[int] : A flag specifying whether E-AC-3 is not supported (0) or supported (1)

EnableTrueHDMlp[int] : A flag specifying whether TrueHD MLP is not supported (0) or supported (1)

EnableDTS[int] : A flag specifying whether DTS is not supported (0) or supported (1)

EnableDTSHD[int] : A flag specifying whether DTS-HD is not supported (0) or supported (1)

LockAudioToVideoClock[int] : A flag specifying whether the audio sample rate clock is locked to the audio clock (0) or video clock
(1) of the incoming HDMI signal.

GetHdmiOutputStatus() As roAssociativeArray

Returns an associative array of Boolean and integer values if an HDMI output is currently connected to a display device. This method will return
Invalid if the HDMI output is currently not connected to a display device. The associative array contains the following parameters:

output_present: Returns True if the HDMI output is connected to a display device or False if no device is present.

output_powered: Returns True if the display device is on (i.e. RX powered) or False if it is off.

EOTF: Returns a string indicating the current electro-optical transfer function (EOTF) used by the display. The following are possible
values:

"HDR (GAMMA)"
"SDR (GAMMA)"
"SMPTE 2084 (PQ)"
"Future (BBC/NHK)"
"unspecified"

audio_bits_per_sample: The number of bits per audio sample

audio_format: The format of the audio output. A "PCM" value indicates that the player is sending decoded output.

audio_channel_count: The number of audio channels in the output

audio_sample_rate: The audio sample rate (in hertz)

Tip

You can also increase the default maximum width/height by reducing the bpp value (e.g. using a 4096x1280x16bpp on non-4K-capable
players is allowed); however, this method is not applicable to HTML pages because Chromium always decodes images to RGBA 8888.

Note

If AC-3 or E-AC-3 is enabled on the player, multichannel audio is supported regardless of the setting. MaxChannelCount

Note

If an HDR video is playing, the following values will be retrieved from the video file: "max_cll", "max_fall", "red_primary_x",
"red_primary_y", "green_primary_x", "green_primary_y", "blue_primary_x", "blue_primary_y", "white_point_x", "white_point_y",
"min_mastering_luminance", "max_mastering_luminance".

GetHdmiInputStatus() As roAssociativeArray

Returns an associative array of Boolean and integer values if an HDMI input is currently connected to the device (XT1143, 4K1142, XD1132,
XD1230 only). This method will return Invalid if there is currently no HDMI input source. The associative array contains the following parameters:

[Boolean] device_present: A flag indicating whether an HDMI input source is present

[int] width: The width of the source video

[int] height: The height of the source video

[Boolean] interlaced: A flag indicating whether the video source is interlaced

[float] frame_rate: The framerate of the source video

[float] pixelClock: The pixel-clock rate of the source video (in MHz)

[string] colorspace: The color space of the source video

[string] audio_type: The audio encoding of the source video

[int] audio_sampling_rate: The audio sampling rate of the source video (in Hz)

GetCompositorCRC() As Integer

Returns the CRC of the Y and Cb signals as a single integer.

GetTxHDCPStatus() As roAssociativeArray

Returns an associative array indicating the current HDCP status of the HDMI output. The associative array currently contains a single key labeled
, which can have the following values:state

"not-required": HDCP is not required by the player. HDCP is required by the player if the video has been decoded locally and needs
protection or if the script has called the method. Note that, even if the "not-required" value is returned, HDCP might still forceHdcpOn()
be active in passthrough mode if an upstream HDMI source (i.e. a device connected to the HDMI input port on the player) has requested
it.
"authenticated": HDCP has been enabled and successfully negotiated.
"authentication-in-progress": HDCP has been enabled, but authentication has not been completed.
"authentication-failed": HDCP has been requested but could not be negotiated.

ForceHDCPOn(force As Boolean) As Boolean

Forces HDCP authentication on the HDMI output if passed True. Passing False to this method will prevent forced authentication attempts with
subsequent hotplug events. This method will return False if the player does not support HDCP or if has already been called ForceHDCPOn()
with the same value.

DisableHDCPRepeater(disable As Boolean) As Boolean

Prevents HDCP authentication from taking place on the HDMI input if passed True. The HDMI source will treat the player like any other non-
HDCP authenticated HDMI sink. This method returns False if the HDCP state could not be changed, indicating that there's no HDMI input on the
player or that HDCP has already been disabled.

SetBackgroundColor(color As Integer) As Boolean

Specifies the background color using an hex value (8 bits for each color).#rrggbb

SetPowerSaveMode(power_save_enable As Boolean) As Boolean

Disables HDMI output, the syncs for VGA output, and the DAC output for component video. The absence of a signal will cause some monitors to
go into standby mode.

IsAttached(connector As String) As Boolean

Returns True if the specified video connector is attached to an output device (i.e. the display EDID can be read successfully). This method can be
passed the following parameters (note that they are case sensitive):

"hdmi"
"vga"

HdmiAudioDisable(disable As Boolean) As Boolean

Disables audio output if True. This method is set to False by default.

SetMultiscreenBezel(x_pct As Integer, y_pct As Integer) As Boolean

1.
2.
3.

Adjusts the size of the bezel used in calculations for multiscreen displays, allowing for users to compensate for the width of their screen bezels.
The calculations for the percentages are as follows:

x_percentage = (width_of_bezel_between_active_screens / width_of_active_screen) * 100

y_percentage = (height_of_bezel_between_active_screens / height_of_active_screen) * 100

The bezel measurement is therefore the total of the top and bottom bezels in the y case, or the left and right bezels in the x case. When this value
is set correctly, images spread across multiple screens take account of the bezel widths, leading to better alignment of images.

SaveEdids(filename As String) As Boolean

Saves the EDID information of the display(s) connected via HDMI and/or VGA. The EDID fields are saved sequentially as raw binaries into the
specified file. The EDID sets are two 2kb each, resulting in a maximum file size of 4kb. This method returns True upon success and False upon
failure.

GetEdidIdentity(video_connector As Boolean) As roAssociativeArray

Returns an associative array with EDID information from a compatible monitor/television. Passing True with this method specifies EDID over
HDMI, while passing False specifies EDID over VGA. These are the possible parameters returned in the associative array:

serial_number_string

year_of_manufacture

monitor_name

manufacturer

text_string

serial_number

product

week_of_manufacture

The system will generate an event when an HDMI cable is hotplugged and the EDID information changes. Calling roHdmiEdidChanged GetEdid
 at this point retrieves the new EDID information.Identity(true)

SetMpcdi(parameters As roAssociativeArray) As Boolean

Enables MPCDI using the passed parameters. See the MPCDI tech note for more information about configuring MPCDI on BrightSign players.

SetSyncDomain(domain As String) As Boolean

Enables Genlock synchronization on the specified domain. To disable Genlock on the domain, pass an empty string to this roSyncManager
method. To reconfigure an active Genlock synchronization, call again using the domain name of the new or edited SetSyncDomain() roSyncMa

instance.nager

ifMessagePort

SetPort(port As Object) As Void

Posts events to the attached message port

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

"Auto" Video Mode

If the mode is set to "auto," the BrightSign player will use the following algorithm to determine the best video mode to use based on connected
hardware:

Try VGA: If VGA is attached, use the highest-resolution mode (as reported by the monitor) that the player supports.
Try HDMI: If HDMI is attached, use the highest-resolution mode (as reported by the monitor) that the player supports.
Default to 640x480x60p.

https://docs.brightsign.biz/display/DOC/MPCDI

4. If an HDMI hotplug event occurs at any point, recheck the monitor EDID to determine if the highest-resolution mode has changed. If it
has changed, reboot the player and use the new video mode.

Selecting Decoders for Playback

The system software selects which video decoder to use based on the resolution probed from the video file. In standard mode, it will attempt to
select the decoder that has the closest maximum supported resolution (i.e. 1920x1080 for the HD decoder and 3840x2160 for the 4K decoder),
without exceeding that maximum resolution. If a decoder has been configured for Mosaic mode, it will match the video resolution against the
specified instead. If both decoders support the same maximum resolution, you can select a decoder by matching the z-order timeslice_mode
of the instance (set using the and methods) with the z-order of the decoder (set using the roVideoPlayer ToFront() ToBack() roVideoMode.

 method).SetDecoderMode()

You can also select the decoder manually. First, configure the decoder(s) using the method. Then, use the roVideoMode.SetDecoderMode() fri
 specified when calling the method to designate a decoder to use for video playback.endly_name

To select a decoder in BrightScript, pass an associative array to the method containing the roVideoPlayer.PlayFile() decoder:
 parameter:[friendly_name]

PlayFile({filename:"text_1.mov", decoder:"main-video"})

To select a decoder for HTML video, include the property with the attribute:decoder:[friendly_name] hwz

<video hwz="decoder:main-video;"> </video>
<video hwz="decoder:sd-video;"> </video>

The of a decoder determines how many video players can be assigned to the decoder using the system software algorithm max_usage
described above—video players beyond the limit may be assigned to another decoder or not displayed at all. On the other hand, if max_usage
you manually assign video players using the of the decoder, you can assign more video players to the decoder than the friendly_name max_u

 limit, but this may cause unpredictable video-display behavior.sage

roVideoPlayer

ON THIS PAGE

ifVideoControl
PlayStaticImage(filename As String) As Boolean
PlayStaticImage(parameters As roAssociativeArray) As Boolean
SetViewMode(mode As Integer) As Boolean
SetRectangle(r As roRectangle) As Void
Hide() As Boolean
Show() As Boolean
EnableSafeRegionTrimming(enable As Boolean) As Boolean
AdjustVideoColor(parameters As roAssociativeArray) As Boolean
SetKeyingValue(keying_settings As roAssociativeArray) As Boolean
SetTransform(transform As String) As Boolean
GetFilePlayability(filename As String) As roAssociativeArray
GetProbePlayability(probe_string As String) As roAssociativeArray
GetStreamInfo() As roAssociativeArray
GetStreamStatistics() As roAssociativeArray
SetPreferredVideo(description As String) As Boolean
SetPreferredAudio(description As String) As Boolean
SetPreferredCaptions(description As String) As Boolean

ifMediaTransport
PlayFile(source As Object) As Boolean
PlayFile(parameters As roAssociativeArray) As Boolean
SetProperties(parameters As roAssociativeArray) As Boolean
GetProperties() As roAssociativeArray
SetPropertiesString(parameters As String) As Boolean
GetPropertiesString() As String

SetPlaybackSpeed(speed as Float) As Boolean
PreloadFile(parameters As roAssociativeArray) As Boolean
Play() As Boolean
Stop() As Boolean
StopClear() As Boolean
Pause(parameters As roAssociativeArray) As Boolean
Resume(parameters As roAssociativeArray) As Boolean
SetLoopMode(mode As Dynamic) As Boolean
AddEvent(user_data As Integer, time_in_ms As Integer) As Boolean
ClearEvents() As Boolean
GetEvents() As roArray
PlayEx(a As Object) As Boolean
GetPlaybackPosition() As Integer
GetDuration() As Integer
Seek(position As Integer) As Boolean
SetFade(parameters As roAssociativeArray) As Boolean
ProbeFile(filename As String) As roAssociativeArray

ifZorderControl
ToFront() As Boolean
ToBack() As Boolean

ifAudioControl
ifAudioAuxControl

MapStereoOutputAux(mapping As Integer) As Boolean
SetVolumeAux(a As Integer) As Boolean
SetChannelVolumesAux(channel_mask As Integer, b As Integer) As Boolean
SetAudioOutputAux(audio_output As Integer) As Boolean
SetAudioModeAux(audio_mode As Integer) As Boolean
SetAudioStreamAux(stream_index As Integer) As Boolean
SetUsbAudioPortAux(a As Integer) As Boolean

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifIdentity
GetIdentity() As Integer

ifMessagePort
SetPort(port As roMessagePort)

Timecode Events
Multiscreen Video Playback

Multiscreen with Portrait Mode
RF Channel Scanning
Playing Encrypted Files
Preferred Streams

SetPreferredVideo(description As String) As Boolean
SetPreferredAudio(description As String) As Boolean
SetPreferredCaptions(description As String) As Boolean

Pattern Matching Rules
Pattern Matching Examples

Examples

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is used to play back video files (using the generic interface). If the message port is set, the object will send events of ifMediaTransport
the type . All object calls are asynchronous. That is, video playback is handled in a different thread from the script, and the script will roVideoEvent
continue to run while video is playing. Decoded video will be scaled to the output resolution specified by .roVideoMode

To display video in a zone/window, you must call . In firmware versions 6.0.x and later, zone support is enabled by defaultSetRectangle()

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifVideoControl

PlayStaticImage(filename As String) As Boolean

Uses the video decoder to display an image. On 4Kx42 models, you can use the video decoder to display 4K images.

PlayStaticImage(parameters As roAssociativeArray) As Boolean

Uses the video decoder to display an image. The passed associative array can contain the following parameters:

Filename: The name of the image file

EncryptionAlgorithm: The file-encryption algorithm. Currently the options are "AesCtr" and "AesCtrHmac".

EncryptionKey: The key to decrypt the image file. This is a byte array consisting of 128 bits of key, followed by 128 bits of IV.

See the section in the roImagePlayer entry for details on displaying encrypted images.Image Decryption

SetViewMode(mode As Integer) As Boolean

Sets the scaling of the video in relation to the video window. The passed integer can be one of the following values:

0: Scales the video to fill the window. The aspect ratio of the source video is ignored, so the video may appear stretched/squashed.
1: Letterboxes and centers the window. The aspect ratio of the source window is maintained.
2:(Default) Scales the video to fill the window. The aspect ratio is maintained, so the video may appear cropped.

Note that view modes rely on correct aspect-ratio marking from video files, and not all files may be marked correctly.

SetRectangle(r As roRectangle) As Void

Specifies the placement and dimensions of the video window using a passed instance.roRectangle

Hide() As Boolean

Hides the video window.

Show() As Boolean

Shows the video window.

EnableSafeRegionTrimming(enable As Boolean) As Boolean

AdjustVideoColor(parameters As roAssociativeArray) As Boolean

Adjusts the video and graphics output of the player using the following parameters, which can be passed to the method as an associative array:
"brightness", "hue", "contrast", "saturation". Each parameter has a default value of 0 and can accept a range of values between -1000 and 1000.

SetKeyingValue(keying_settings As roAssociativeArray) As Boolean

Applies a mask to each pixel in the video window. If the pixel value falls within the specified range of chroma and luma key values, the pixel will
appear transparent, allowing video and graphics behind it to show through. If the pixel value does not fall within the specified range, the pixel is
unaltered. The chroma and luma key values are set using integers contained in the passed associative array:

luma

cr

cb

Each integer value is arranged as follows: . For [8 bits of mask][8 bits of high-end range][8 bits of low-end range]
example, an 0xff8040 value for luma would mask luma at 0xff (no change) and then apply a range from 0x40 to 0x80 for changing to transparent
alpha. Note that chroma and luma keying work well with simple shapes and patterns, while complex patterns like hair or grass will not be masked
effectively.

SetTransform(transform As String) As Boolean

Applies one of eight transforms to the video plane. This method works equally well with all video sources (files, streams, HDMI input) and can be
called separately on multiple instances. Calls to this method only take effect when the next file/source is played, and transitions to roVideoPlayer
a transformed video do not take place seamlessly.

identity: No transformation (default behavior)

https://docs.brightsign.biz/display/DOC/roImagePlayer#roImagePlayer-image_decryption

rot90: 90 degree clockwise rotation

rot180: 180 degree rotation

rot270: 270 degree clockwise rotation

mirror: Horizontal mirror transformation

mirror_rot90: Mirrored 90 degree clockwise rotation

mirror_rot180: Mirrored 180 degree clockwise rotation

mirror_rot270: Mirrored 270 degree clockwise rotation

GetFilePlayability(filename As String) As roAssociativeArray

Returns an associative array indicating the playability of the video file. For the following keys, a value indicates that the component "playable"
is playable, while a value indicates that there is no media—any other value indicates that the media is unplayable."no media"

audio: The audio file associated with the video

video: The video file associated with the video

file: The video container file

GetProbePlayability(probe_string As String) As roAssociativeArray

Returns an associative array indicating the playability of the probe string. For the following keys, a value indicates that the "playable"
component is playable, while a value indicates that there is no media—any other value indicates that the media is unplayable."no media"

audio: The audio file associated with the video

video: The video file associated with the video

file: The video container file

GetStreamInfo() As roAssociativeArray

Returns an associative array containing information about the current video. To retrieve metadata about a video file that is not currently playing,
use the method instead. The associative array can contain the following parameters:ProbeFile()

[string] Source: The URI of the video file

[string] SrcAddress: The source IP address of the video stream

[string] DstAddress: The multicast address on which the IP stream is being transmitted. This value may be absent if the RTSP
service has not redirected the stream (in this case, the IP address of the player may be displayed instead).
[string] Encapsulation: The encapsulation of the video. This value can be "ES" (elementary stream), "TS" (transport stream), or
"UNKNOWN" for streaming video.
[string] AudioFormat: The format of the audio file

[int] AudioSampleRate: The audio sample rate (in hertz)

[int] AudioChannelCount: The number of audio channels

[int] AudioDuration: The duration of the audio track (in milliseconds)

[string] VideoFormat: The format of the video file

[int] VideoFramerate: The video frame rate (in frames per second)

[int] VideoColorDepth: The color depth of the video (in bits)

[int] VideoWidth: The width of the video (in pixels)

[int] VideoHeight: The height of the video (in pixels)

[float] VideoAspectRatio: The aspect ratio of the video

[int] VideoDuration: The duration of the video (in milliseconds)

[int] PreferredVideo: The current preferred video track, as determined by the methodSetPreferredVideo()

[int] PreferredAudio: The current preferred audio track, as determined by the methodSetPreferredAudio()

[int] PreferredSubtitle: The current preferred subtitle track, as determend by the methodSetPreferredCaptions()

[roArray] Programs: A list of programs that are part of the video. Each entry contains the program ID, along with indicies of video,
audio, and subtitle tracks that are part of the program. These track lists can be used–along with the , , and Video Audio Subtitle
parameters and the methods–to scan and select tracks (see the for more SetPreferred<>() example at the bottom of this page
details). Each entry can contain the following parameters:

[int] ProgramId: The program ID

[roArray] Video: An index of integers corresponding to video tracks that are part of the program

[roArray] Audio: An index of integers corresponding to audio tracks that are part of the program

Note

 The coordinates and dimensions of the instance containing the video are not affected by rotation.roRectangle

[roArray] Subtitle: An index of integers corresponding to subtitle tracks that are part of the program

[roArray] Video: A list of video tracks that are part of the video. Each entry in the list is an associtaive array with the following
parameters:

[float] AspectRatio: The aspect ratio of the video track

[string] Name: The name of the video track

[int] Width: The video width (in pixels)

[int] Height: The video height (in pixels)

[int] ColorDepth: The aspect ratio of the video track

[int] Duration: The duration of the video track (in milliseconds)

[int] Program: The ID of the program to which the video track belongs

[float] FrameRate: The framerate of the video track

[int] Pid: The packet identifier (PID) of the video track

[string] Format: The format of the video track

[roArray] Audio: A list of audio tracks that are part of the video. Each entry in the list is an associtaive array with the following
parameters:

[string] Name: The name of the audio track

[int] ChannelCount: The number of audio channels

Format[string] : The format of the audio track

Pid[int] : The packet identifier (PID) of the audio track

Program[int] : The ID of the program to which the audio track belongs

Duration[int] : The duration of the audio track (in milliseconds)

SampleRate[int] : The audio sample rate (in hertz)

[string] Language: A code specifying the language of the audio track (e.g. "eng", "spa"). The language codes are specified
in the ISO 639-2 standard.

[roArray] Subtitle: A list of subtitle tracks that are part of the video. Each entry in the list is an associtaive array with the following
parameters:

: A code specifying the language of the subtitle track (e.g. "eng", "spa"). The language codes are [string] Language
specified in the ISO 639-2 standard.

: The ID of the program to which the subtitle track belongs[int] Program

: The packet identifier (PID) of the subtitle track[int] Pid

: The encoding standard of the subtitles (e.g. "CEA708", "DVB")[string] Type

GetStreamStatistics() As roAssociativeArray

Returns an associative array containing statistics associated with the IP stream. The associative array contains the following parameters:

[int] Bitrate: The video bitrate

[int] NumDisplayed: The number of video frames displayed. This is based on the refresh rate of the monitor.

[int] NumUnderflowed: The number of times the video FIFO has under-flowed. This usually indicates that the needs to buffer size
be increased.
[int] NumDecodeErrors: The number of video frames with decode errors

[int] NumDecoded: The total number of video frames decoded

[int] NumAudioDecoded: The total number of audio frames decoded

[int] NumAudioDecodeErrors: The number of audio frames with decode errors

[int] NumAudioDummy: The total number of missing audio frames. This value will increment when an audio frame goes missing or a
timestamp is incorrect. A couple of frames will often be registered when streaming begins.
[int] NumAudioUnderflows: The number of times the audio FIFO has under-flowed. This usually indicates that the needsbuffer size
to be increased.
[int] VideoFramesPerSecond: The video frame rate (in frames per second)

Tip

To retrieve more information about an individual video/audio/subtitle track, use the integer value to look up the
associated / / index (e.g. Video Audio Subtitle print streaminfo.subtitle[streaminfo.programs[0].

).subtitle[1]]

Note

All counters are reset every time PlayFile() is called. The audio keys will not be included in the associative array if there is no audio in
the stream.

http://support.brightsign.biz/entries/58240184-Can-I-change-the-size-of-the-streaming-buffer-
http://support.brightsign.biz/entries/58240184-Can-I-change-the-size-of-the-streaming-buffer-

[int] VideoInterlaced: A flag indicating whether the video frames are interlaced or progressive

SetPreferredVideo(description As String) As Boolean

Chooses a video stream from the video input based on the in the passed string.parameters

SetPreferredAudio(description As String) As Boolean

Chooses an audio stream from the video input based on the in the passed string.parameters

SetPreferredCaptions(description As String) As Boolean

Chooses a data stream from the video input based on the in the passed string.parameters

ifMediaTransport

PlayFile(source As Object) As Boolean

Plays a video file or HDMI Input. To play a file, pass a string specifying the file name and path. To play HDMI Input, pass an instance.roVideoInput

PlayFile(parameters As roAssociativeArray) As Boolean

Plays video using the parameters passed as an associative array. All settings specified with this method are transient: They will only last for the
duration of the file/stream playback. To specify persistent settings, use the method or the equivalent "Set" methods (SetProperties() SetTr

, , etc.).ansform() SetViewMode()

Filename: The name/path of a file to be used for playback

Url: The URL of a to be used for playbackvideo stream

FadeInLength: The length (in milliseconds) of fade-in at the beginning of the media

FadOutLength: The length (in milliseconds) of fade-out at the end of the media

Transform: The rotation of the video. See the entry for a list of applicable values. SetTransform()

Decoder: The of the that you wish to use to play the video.friendly_name decoder

LoopMode: The looping mode for media playback. See the entry for a list of applicable values. SetLoopMode()

ViewMode: The view mode of the video window. See the entry for a list of applicable values. SetViewMode()

StreamLatency: The amount of deviation (in milliseconds) from the default latency value: For example, a value of -500 will reduce the
latency by half a second; a 500 value will increase the latency by half a second; and a 0 value will specify the default latency. Specifying
a negative value will not change the buffer size; instead, it will give the buffer less time to fill up before playback begins. Usable values
extend to approximately -750, though this value may differ depending on the network environment. Reducing the latency too much will
result in obvious playback stutter.
StreamFadeIn: The length (in milliseconds) of audio/video fade-in for streams.

StreamLowLatency: Low-latency mode for RTSP streams. Setting this parameter to True will achieve the lowest possible latency for a
stream, but at a reduced maximum bitrate.
StreamProbe: The stream probe type. This parameter can be set to "deep" (to include video dimensions, audio sample rate, etc.) or
"shallow".
StreamMaxBitrate: The maximum initial bitrate (in bytes) for adaptive streaming.

These parameters are used to set they keying value of the video (see the entry for more details) SetKeyingValue()

LumaKey

CrKey

CbKey

These parameters are used to :play encrypted video

EncryptionAlgorithm

EncryptionKey

These parameters are used to parse :preferred streams

PreferredVideo

PreferredAudio

PreferredCaptions

These parameters are used in conjunction with the object to synchronize playback: roSyncManager

https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-preferred_streams
https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-preferred_streams
https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-preferred_streams
https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-setproperties
http://support.brightsign.biz/hc/en-us/articles/218066017
https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-settransform
https://docs.brightsign.biz/display/DOC/roVideoMode#roVideoMode-selecting_decoders
https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-setloopmode
https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-setviewmode
https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-setkeyingvalue
https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-playing_encrypted_files
https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-preferred_streams

SyncDomain

SyncId

SyncIsoTimestamp

These parameters are used for playback:multiscreen

MultiscreenWidth

MultiscreenHeight

MultiscreenX

MultiscreenY

SourceX

SourceY

SourceWidth

SourceHeight

SetProperties(parameters As roAssociativeArray) As Boolean

Sets persistent properties for video playback. These properties can be temporarily overridden by the parameters in a See the PlayFile() call.
entry for a list of available parameters. PlayFile()

GetProperties() As roAssociativeArray

Returns the current video-playback properties as an associative array. See the entry for a description of parameters. PlayFile()

SetPropertiesString(parameters As String) As Boolean

Sets persistent properties for video playback using a comma-separated list. These properties can be temporarily overridden by the parameters in
a call. See the entry for a list of available parameters.PlayFile() PlayFile()

Example
vp = CreateObject("roVideoPlayer")
vp.SetPropertiesString("Transform=rot90,StreamLowLatency=true")

GetPropertiesString() As String

Returns the current video-playback properties as a string (e.g.). See the entry for a "<key>=<value>, <key>=<value>" PlayFile()
description of parameters.

SetPlaybackSpeed(speed as Float) As Boolean

Modulates the playback speed of the video, using the float 1.0 as the value for standard playback speed. To fast-forward the video, pass a value
greater than 1.0; to rewind the video, pass a negative value. A value between 0 and 1.0 will the play the video in slow motion.

PreloadFile(parameters As roAssociativeArray) As Boolean

Play() As Boolean

Plays the currently loaded file or stream.

Stop() As Boolean

Stops playback of the currently loaded file or stream.

StopClear() As Boolean

Stops video playback and clears the currently loaded file or stream.

Pause(parameters As roAssociativeArray) As Boolean

Pauses the video file or stream. This method accepts an optional associative array containing the following parameter:

SyncIsoTimeStamp: The time stamp for pausing synchronized video. This value is provided by the methroSyncManager.Synchronize()
od on the master unit and the method on slave unit(s).roSyncManagerEvent.GetIsoTimeStamp()

https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-multiscreen_video_playback
https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-playfile
https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-playfile
https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-playfile
https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-playfile

Resume(parameters As roAssociativeArray) As Boolean

Resumes a paused video file or stream. This method accepts an optional associative array containing the following parameter:

SyncIsoTimeStamp: The time stamp for resuming synchronized video. This value is provided by the metroSyncManager.Synchronize()
hod on the master unit and the method on slave unit(s). roSyncManagerEvent.GetIsoTimeStamp()

SetLoopMode(mode As Dynamic) As Boolean

Specifies the looping mode for media playback. If this method is passed True, a single media file will loop seamlessly if possible. If the video file c
, then the video will loop with seams. Setting this method to False, which is the default behavior, allows for playback annot be looped seamlessly

of multiple files in a playlist—with noticeable gaps between the end and beginning of the file. Alternatively, this method can accept an associative
array with three Boolean parameters: , , . The following table describes how these parameters enable enable_if_seamless allow_seamless
interact:

enable enable_if_seamless allow_seamless Behavior

False X X Looping is disabled in all cases (the
 and enable_if_seamless allow

 parameters are _seamless
ignored).

True False* True* The video is looped seamlessly if
possible; otherwise, it is looped with
seams.

True* True True* The video is looped seamlessly if
possible; otherwise, it is not looped
at all.

True* True False Looping is disabled in all cases.

True False* False The video is looped with seams.

*or not specified.

AddEvent(user_data As Integer, time_in_ms As Integer) As Boolean

Adds a trigger that will generate an when it reaches the specified time. The user data will be passed with the event and can be roVideoEvent
retrieved using the method. See the section below for more details.roVideoEvent.GetData() Video Timecode Events

ClearEvents() As Boolean

Removes all timecode events that have been added using the method.AddEvent()

GetEvents() As roArray

Returns an array of timecode events added to the instance using the method. Each entry in the array consists of an roVideoPlayer AddEvent()
associative array with the following values:

id: The of the event (as an Integer)user_data

timestamp: The timestamp (in milliseconds)

PlayEx(a As Object) As Boolean

This object has been deprecated. We suggest using the method for video playback instead.PlayFile()

GetPlaybackPosition() As Integer

Returns the amount of time the current file or IP stream has been playing (in milliseconds). If is set to True, the value will not SetLoopMode()
reset when playback loops. If looping playback or IP streaming continues uninterrupted for approximately 25 days, the value will wrap around and
become negative.

GetDuration() As Integer

Note

Media End events are only sent if seamless looping is disabled, or if is enabled and the file cannot be looped enable_if_seamless
seamlessly.

http://support.brightsign.biz/hc/en-us/articles/218066567
http://support.brightsign.biz/hc/en-us/articles/218066567
https://docs.brightsign.biz/pages/viewpage.action?pageId=2424919#roVideoPlayer-timecode_events

Returns the total playback duration (in milliseconds) of the current file.

Seek(position As Integer) As Boolean

Seeks to the specified position in the audio/video file(measured in milliseconds). If the file is currently playing, then it will continue to play;
otherwise, it will remain paused after seeking. This method only supports the MP4/MOV video container; all standard audio formats are supported.

SetFade(parameters As roAssociativeArray) As Boolean

Fades out both the video and audio when the method is called. When the fade completes, an object with the value roVideoEvent 18 – FadeOut
will be posted to the message port. This method accepts an associative array, which can currently contain only one parameter:

FadeOutLength: The length of time (in milliseconds) over which the audio/video fades out.

ProbeFile(filename As String) As roAssociativeArray

Returns an associative array containing metadata about the specified video file. To retrieve metadata about a file that is currently playing, use the
 method instead. The returned associative array can contain the following parameters:GetStreamInfo()

Source: The URI of the file

Encapsulation: The encapsulation of the video

AudioFormat: The format of the audio file

AudioSampleRate: The audio sample rate (in hertz)

AudioChannelCount: The number of audio channels

AudioDuration: The duration of the audio track (in milliseconds)

VideoFormat: The format of the video file

VideoColorDepth: The color depth of the video (in bits)

VideoWidth: The width of the video (in pixels)

VideoHeight: The height of the video (in pixels)

VideoAspectRatio: The aspect ratio of the video

VideoDuration: The duration of the video (in milliseconds)

ifZorderControl

ToFront() As Boolean

Places the video layer of the instance in front of the other video player.roVideoPlayer

ToBack() As Boolean

Places the video layer of the instance behind the other video player.roVideoPlayer

ifAudioControl

See the entry for documentation of . roAudioPlayer ifAudioControl

ifAudioAuxControl

MapStereoOutputAux(mapping As Integer) As Boolean

SetVolumeAux(a As Integer) As Boolean

SetChannelVolumesAux(channel_mask As Integer, b As Integer) As Boolean

SetAudioOutputAux(audio_output As Integer) As Boolean

Note

This feature is not available on HD/LS players, which only support a single video player. For more information on ordering video layers
relative to the graphics layer, refer to the entry.roVideoMode.SetGraphicsZOrder()

SetAudioModeAux(audio_mode As Integer) As Boolean

SetAudioStreamAux(stream_index As Integer) As Boolean

SetUsbAudioPortAux(a As Integer) As Boolean

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifIdentity

GetIdentity() As Integer

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type to the attached message port.roVideoEvent

Timecode Events

You can use the method to add triggers for events, which will generate the value at the AddEvent() roVideoEvent 12 – Timecode Hit
specified millisecond times in a video file. Use the method to retrieve the user data passed with .roVideoEvent.GetData() AddEvent()

The following example script uses timecode events. The script prints 2, 5, and 10 at 2 seconds, 5 seconds, and 10 seconds into the video,
respectively. The "msg" is approaching frame accurate.

v = CreateObject("roVideoPlayer")
p = CreateObject("roMessagePort")
v.SetPort(p)

ok = v.AddEvent(2, 2000) ' Add timed events to video
ok = v.AddEvent(5, 5000)
ok = v.AddEvent(10, 10000)
ok = v.AddEvent(100, 100000)
ok = v.PlayFile("SD:/C5_d5_phil.vob")

waitloop:
msg = Wait(0,p) ' Wait for all events
if msg.GetInt() = 8 then stop ' End of file
if msg.GetInt() <> 12 goto waitloop ' I only care about time events
print msg.GetData() ' Print out index when the time event happens
goto waitloop

Multiscreen Video Playback

The and methods can be used in conjunction with to stretch an image across multiple screens in PreloadFile() PlayFile() roSyncManager
an array or display windowed portions of a video.

The following example script uses the method for multiscreen display:PreloadFile()

Note

The interface has been deprecated. We recommend using the interface instead.ifIdentity ifUserData

v=CreateObject("roVideoPlayer")
a=CreateObject("roAssociativeArray")
a["Filename"] = "test.ts"
a["MultiscreenWidth"] = 3
a["MultiscreenHeight"] = 2
a["MultiscreenX"] = 0
a["MultiscreenY"] = 0
v.PreloadFile(a)
...
...
v.Play()

The and values specify the width and height of the multiple-screen matrix. For example, 3x2 would MultiscreenWidth MultiscreenHeight
be 3 screens wide and 2 high. and specify the position of the current screen within that matrix. In the case MultiscreenX MultiscreenY
above, on average only 1/6th of the video is drawn on each screen (though the view mode still applies), so depending on the shape of the video,
it may have black bars on the side screens. In this way, it is relatively simple for a video player to display part of an image based on its position in
the multiscreen array.

PreloadFile() does all of the preliminary work to get ready to play the specified video clip, including stopping the playback of the previous
video file. The call to "Play" starts the playback. This is good for synchronizing video across multiple players as they can all be prepared ready to
play and then will immediately start playing when the "Play" command is issued. This reduces synchronization latencies.

The following are the default values for the parameters:

MultiscreenWidth= 1

MultiscreenHeight= 1

MultiscreenX= 0

MultiscreenY= 0

This script uses to display a portion of a video. This displays a windowed portion of the video file starting at coordinates PlayFile() test.ts
SourceX, SourceY, and SourceWidth by SourceHeight in size. The setting is still honored as if displaying the whole file.SetViewMode()

v=CreateObject("roVideoPlayer")
a=CreateObject("roAssociativeArray")
a["Filename"] = "test.ts"
a["SourceX"] = 100
a["SourceY"] = 100
a["SourceWidth"] = 1000
a["SourceHeight"] = 500
v.PlayFile(a)

Multiscreen with Portrait Mode

To create a multiple-screen matrix in portrait mode, call or before calling SetTransform("rot90") SetTransform("rot270") PlayFile
.()

This script creates a 2x1 portrait-mode multiscreen display:

v1=CreateObject("roVideoPlayer")
v1.SetViewMode(1)
r=CreateObject("roRectangle", 0, 0, 1920, 1080)
v1.SetRectangle(r)
v1.SetTransform("rot90")

aa1=CreateObject("roAssociativeArray")
aa1.MultiscreenWidth = 2
aa1.MultiscreenHeight = 1
aa1.MultiscreenX = 1
aa1.MultiscreenY = 0
aa1.Filename = "example.mp4"
v1.PlayFile(aa1)

RF Channel Scanning

The method can be used for channel scanning and handling functionality similar to . To use for PlayFile() roChannelManager PlayFile()
channel scanning, pass an with the following possible parameters:roAssociativeArray

VirtualChannel
RfChannel
SpectralInversion

INVERSION_ON
INVERSION_OFF
INVERSION_AUTO

ModulationType
QAM_64
QAM_256
QAM_AUTO
8VSB

VideoCodec
MPEG1-Video
MPEG2-Video
MPEG4Part2-Video
H264
H264-SVC
H264-MVCAVSC

AudioCodec
MPEG-Audio
AAC
AAC+
AC3AC3+DTS

VideoPid
AudioPid
PcrPid

The and parameters must be present for to scan correctly. If you specify only these parameters, VirtualChannel RfChannel PlayFile()
the player will scan the RF channel for a QAM/ATSC signal and attempt to retrieve the specified virtual channel from the results. The results from
this action are cached so that subsequent calls to will take much less time. Providing the and/or PlayFile() SpectralInversion Modulatio

 parameters will further speed up the scanning process.nType

If all parameters are supplied, then no scanning is required and the player can tune to the channel immediately. If one or more of the optional
parameters is missing, then the player must parse the transport stream metadata to find the appropriate values for the supplied VirtualChannel
 and .RfChannel

Playing Encrypted Files

The object can be used to play audio/video files or streams that have been encrypted using AES. roVideoPlayer

The associative array passed to the method can accept two parameters for file decryption:PlayFile()

EncryptionAlgorithm: The file-encryption algorithm. The following are the current options:

"AesCtr": The AES algorithm in CTR mode.
"AesCtrHmac": The AES algorithm in CTR mode with HMAC.
"TsAesEcb": The AES algorithm in ECB mode (e.g. with a Harmonic Prostream). This algorithm is currently used for streaming
encryption/decryption.

EncryptionKey: A byte array consisting of 128 bits of key. If the encryption algorithm is AES-CTR or AES-CTR-HMAC, this is followed
by 128 bits of IV.

Note

Streaming decryption requires firmware version 6.2.x and is currently only supported with the UDP protocol and the HTTP protocol
(when HTTP is paired with an MPEG2 transport stream). If using a UDP multicast MPEG2 transport stream, one of the elemental
streams should provide the PCR to the player.

Note

File decryption is supported on the XTx43, 4Kx42, XDx33, XDx32, XDx30, HDx23, HDx22, and LS423 platforms. Contact support@brig
 to learn more about generating a key for obfuscation and storing it on the player.htsign.biz

mailto:support@brightsign.biz
mailto:support@brightsign.biz

1.
2.
3.

Example
v = CreateObject("roVideoPlayer")
aa=CreateObject("roAssociativeArray")
aa.filename = "wall-sync2.mp4"
aa.encryptionalgorithm = "AesCtr"
aa.encryptionkey = CreateObject("roByteArray")
aa.encryptionkey.fromhexstring
("01030507090b0d0f00020406080a0c0e00000000000000000000000000000000")

v.PlayFile(aa)

Preferred Streams

If multiple video, audio, or data streams are encapsulated in the video input, you can use the , SetPreferredVideo() SetPreferredAudio()
, and methods to determine which stream to use. For example, if a video may contain English and Spanish audio SetPreferredCaptions()
tracks, you can call to specify that the Spanish track should be played if it exists, with the video defaulting to English SetPreferredAudio()
otherwise.

Preferred streams are chosen by matching the patterns in the passed string(s) against the textual description of the stream:

The passed string is a semicolon-separated list of templates.
Each template is a comma-separated list of patterns.
Each pattern is a pair that is matched directly against the stream description.[field_name]=[field_value]

SetPreferredVideo(description As String) As Boolean

Each template in the passed video description string can contain the following patterns:

pid=[integer]: The packet identifier (PID) of the video stream you wish to display

program=[integer]: The program number of the video stream

codec=[video_codec]: The preferred video codec, which can be any of the following:

MPEG1

MPEG2

MPEG4Part2

H263

H264

VC1

H265

width=[integer]: The preferred video width

height=[integer]: The preferred video height

aspect=[float(x.yy)]: The preferred aspect ratio of the video stream as a floating-point number with two fractional digits.

colordepth=[integer]: The preferred color depth of the video.

Example
"pid=7680, codec=H264, width=1280, height=720, aspect=1.78, colordepth=8;;"

SetPreferredAudio(description As String) As Boolean

Each template in the passed description string can contain the following patterns:

pid=[integer]: The packet identifier (PID) of the audio stream you wish to play

program=[integer]: The program number of the audio stream

codec=[audio_codec]: The preferred audio codec, which can be any of the following:

MPEG

MP3

AAC

AAC-PLUS

AC3

AC3-PLUS

DTS

PCM

FLAC

Vorbis

channels=[integer]: The preferred number of audio channels (from 1 to 8)

freq=[frequency]: The preferred sample frequency of the audio track, which can be any of the following:

32000

44100

48000

lang=[language]: A code that determines the preferred language of the audio track (e.g. eng, spa). The language codes are specified
in the ISO 639-2 standard.
type=[audio_type]: The preferred audio type, which can be one of the following:

Main audio

Clean effects

Hearing impaired

Visual impaired commentary

Example
"pid=4192, codec=AC3, channels=5, freq=48000, lang=eng, type=Main audio;;"

SetPreferredCaptions(description As String) As Boolean

Each template in the passed description string can contain the following patterns:

pid=[integer]: The packet identifier (PID) of the caption stream you wish to play

type=[subtitle_type]: The encoding standard of the subtitles. This value can be one of the following:

CEA708: If the CEA-708 standard is not present, the subtitle_type will default to CEA-608 (if it is present).

CEA608

DVB

lang=[language]: A code that determines the preferred language of the subtitles (e.g. eng, spa). The language codes are specified in
the ISO 639-2 standard.
service=[integer]: The preferred service number of the caption stream

Example
"pid=0, type=Cea708, lang=eng service=1;;"

Pattern Matching Rules

Note the following rules when matching templates to video, audio, or caption stream descriptions:

For a template to match a stream description, every pattern within the template must match.
The first listed template to match the stream description (if any) will be used.
An empty template string will match any stream description.
All value comparisons are case-insensitive.
Numerical values must match the stream description exactly (without leading zeroes). For example, the pattern will never pid=016
match the stream PID value of 16.
To indicate logical negation, apply the "!" exclamation mark to the beginning of a pattern. For example, specifying SetPreferredVideo

 will match only streams that are not encoded using H.265.("!codec=H265")

Apply the ">" greater-than symbol before an integer to indicate that, for a successful match, the value in the stream description must be gr
the value following the symbol. For example, specifying will eater than SetPreferredVideo("width=<1921,height=<1081")

match only videos that are no larger than full-HD.

Apply the "<" less-than symbol before an integer to indicate that, for a successful match, the value in the stream description must be less
the value following the symbol.than

Pattern Matching Examples

The following examples illustrate some of the pattern matching behavior described above:

The following template list contains three patterns: , and an empty template. The first pattern specifies an lang=eng, lang=spa
English language channel; if the English channel does not exist, the second pattern specifies a Spanish language channel. The third
pattern specifies any other channel if the first two don't exist (the empty template matches anything).

SetPreferredAudio("lang=eng;lang=spa;;")

Since the following template list is empty, no captions are specified. This can be used to disable captions altogether.

SetPreferredCaptions("")

The following template list contains an empty template. Since an empty template matches anything, the first video stream encountered
will be played. This is the default behavior of all attributes.

SetPreferredVideo(";")

The following template list specifies a 48KHz audio stream if there is one; otherwise, no audio stream will be played. Observe that the list
is not correctly terminated with a semicolon; in this case, the semi-colon is implicitly supplied.

SetPreferredAudio("freq=48000")

The following template list contains two templates. Note that all patterns within a template must match the stream description for the
entire template to match. In this example, an AAC-encoded English track is preferred; an MP3-encoded English track is designated as
the second option; and any track will be chosen if neither template is matched.

SetPreferredAudio("codec=aac,lang=eng;codec=mp3,lang=eng;;")

Examples

The following script selects a program from a video and sets preferred video and audio tracks for playback:

v1 = CreateObject("roVideoPlayer")
v1.PlayFile("example.ts")
si = v1.GetStreamInfo()

' Pick the program
prog = si.Programs[2].ProgramId
v1 = CreateObject("roVideoPlayer")

' Select the program
v1.SetPreferredVideo("prog=" + prog.ToStr() + ";")
v1.SetPreferredAudio("prog=" + prog.ToStr() + ";")

' Play the stream/file
v1.PlayFile("example.ts")

File Objects

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This section describes objects for creating, deleting, and manipulating files.

roAppendFile
roCreateFile
roReadFile
roReadWriteFile

roAppendFile

ON THIS PAGE

ifStreamSend
SetSendEol(eol_sequence As String) As Void
SendByte(byte As Integer) As Void
SendLine(string As String) As Void
SendBlock(a As Dynamic) As Void
Flush()
AsyncFlush()

ifStreamPosition
CurrentPosition() As Integer

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object can be used to create a new file or append information to the end of an existing file.

Object Creation: Creating an object opens an existing file or creates a new file. The current position is set to the end of the file, and roAppendFile
all writes are made to the end of the file.

CreateObject("roAppendFile", filename As String)

ifStreamSend

SetSendEol(eol_sequence As String) As Void

Sets the EOL sequence when writing to the stream. The default value is CR+LF. If you need to set this value to a non-printing character, use the
.chr()global function

SendByte(byte As Integer) As Void

Writes the specified byte to the stream.

SendLine(string As String) As Void

Writes the specified characters to the stream followed by the current EOL sequence.

SendBlock(a As Dynamic) As Void

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/pages/createpage.action?spaceKey=DOC&title=roGlobal&linkCreation=true&fromPageId=984467

Writes the specified characters to the stream. This method can support either a string or an . If the block is a string, any null bytes will roByteArray
terminate the block.

Flush()

AsyncFlush()

ifStreamPosition

CurrentPosition() As Integer

Returns the current position within the file.

roCreateFile

ON THIS PAGE

ifReadStream
SetReceiveEol(eol_sequence As String) As Void
ReadByte() As Integer
ReadByteIfAvailable() As Integer
ReadLine() As String
ReadBlock(size As Integer) As String
AtEof() As Boolean

ifStreamSend
SetSendEol(eol_sequence As String) As Void
SendByte(byte As Integer) As Void
SendLine(string As String) As Void
SendBlock(a As Dynamic) As Void
Flush()
AsyncFlush()

ifStreamSeek
SeekAbsolute(offset As Integer) As Void
SeekRelative(offset As Integer) As Void
SeekToEnd() As Void
CurrentPosition() As Integer

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object can be used to write a new file or overwrite an existing file.

Object Creation: Creating an object opens an existing file or creates a new file. If the file exists, it is truncated to a size of zero.roCreateFile

CreateObject("roCreateFile", filename As String)

ifReadStream

SetReceiveEol(eol_sequence As String) As Void

Sets the EOL sequence when reading from the stream.

ReadByte() As Integer

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Reads a single byte from the stream, blocking if necessary. If the EOF is reached or there is an error condition, then a value less than 0 is
returned.

ReadByteIfAvailable() As Integer

Reads a single byte from the stream if one is available. If no bytes are available, it returns immediately. A return value less than 0 indicates either
that the EOF has been reached or no byte is available.

ReadLine() As String

Reads until it finds a complete end of the line sequence. If it fails to find the sequence within 4096 bytes, then it returns the 4096 bytes that are
found. No data is discarded in this case.

ReadBlock(size As Integer) As String

Reads the specified number of bytes. The number is limited to 65536 bytes. In the event of an EOF or an error, fewer bytes than requested will
be returned. Any null bytes in the file will mask any further bytes.

AtEof() As Boolean

Returns True if an attempt has been made to read beyond the end of the file. If the current position is at the end of the file, but no attempt has
been made to read beyond it, this method will return False.

ifStreamSend

SetSendEol(eol_sequence As String) As Void

Sets the EOL sequence when writing to the stream. The default value is CR+LF. If you need to set this value to a non-printing character, use the
.chr() global function

SendByte(byte As Integer) As Void

Writes the specified byte to the stream.

SendLine(string As String) As Void

Writes the specified characters to the stream followed by the current EOL sequence.

SendBlock(a As Dynamic) As Void

Writes the specified characters to the stream. This method can support either a string or an . If the block is a string, any null bytes will roByteArray
terminate the block.

Flush()

AsyncFlush()

ifStreamSeek

SeekAbsolute(offset As Integer) As Void

Seeks the specified offset. If the offset is beyond the end of the file, then the file will be extended upon the next write and any previously
unoccupied space will be filled with null bytes.

SeekRelative(offset As Integer) As Void

Seeks to the specified offset relative to the current position. If the ultimate offset is beyond the end of the file, then the file will be extended as
described in .SeekAbsolute()

SeekToEnd() As Void

Seeks to the end of the file.

CurrentPosition() As Integer

Retrieves the current position within the file.

roReadFile

ON THIS PAGE

ifStreamRead
SetReceiveEol(eol_sequence As String) As Void
ReadByte() As Integer
ReadByteIfAvailable() As Integer
ReadLine() As String
ReadBlock(size As Integer) As String
AtEof() As Boolean

ifStreamSeek
SeekAbsolute(offset As Integer) As Void
SeekRelative(offset As Integer) As Void
SeekToEnd() As Void
CurrentPosition() As Integer

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

Object Creation: Creating an object opens the specified file for reading only. Object creation fails if the file does not exist. roReadFile

CreateObject("roReadFile", filename As String)

ifStreamRead

SetReceiveEol(eol_sequence As String) As Void

Sets the EOL sequence when reading from the stream. The default EOL character is LF (ASCII value 10). If you need to set this value to a non-
printing character, use the .chr() global function

ReadByte() As Integer

Reads a single byte from the stream, blocking if necessary. If the EOF is reached or there is an error condition, then a value less than 0 is
returned.

ReadByteIfAvailable() As Integer

Reads a single byte from the stream if one is available. If no bytes are available, it returns immediately. A return value less than 0 indicates either
that the EOF has been reached or no byte is available.

ReadLine() As String

Reads until it finds a complete end of the line sequence. If it fails to find the sequence within 4096 bytes, then it returns the 4096 bytes that are
found. No data is discarded in this case.

ReadBlock(size As Integer) As String

Reads the specified number of bytes. The number is limited to 65536 bytes. In the event of an EOF or an error, fewer bytes than requested will
be returned. Any null bytes in the file will mask any further bytes.

AtEof() As Boolean

Returns True if an attempt has been made to read beyond the end of the file. If the current position is at the end of the file, but no attempt has
been made to read beyond it, this method will return False.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifStreamSeek

SeekAbsolute(offset As Integer) As Void

Seeks the specified offset. If the offset is beyond the end of the file, then the file will be extended upon the next write and any previously
unoccupied space will be filled with null bytes.

SeekRelative(offset As Integer) As Void

Seeks to the specified offset relative to the current position. If the ultimate offset is beyond the end of the file, then the file will be extended as
described in .SeekAbsolute()

SeekToEnd() As Void

Seeks to the end of the file.

CurrentPosition() As Integer

Retrieves the current position within the file.

roReadWriteFile

ON THIS PAGE

ifReadStream
SetReceiveEol(eol_sequence As String) As Void
ReadByte() As Integer
ReadByteIfAvailable() As Integer
ReadLine() As String
ReadBlock(size As Integer) As String
AtEof() As Boolean

ifStreamSend
SetSendEol(eol_sequence As String) As Void
SendByte(byte As Integer) As Void
SendLine(string As String) As Void
SendBlock(a As Dynamic) As Void
Flush()
AsyncFlush()

ifStreamSeek
SeekAbsolute(offset As Integer) As Void
SeekRelative(offset As Integer) As Void
SeekToEnd() As Void
CurrentPosition() As Integer

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

The object opens a file and allows both reading and writing operations on that file.

Object Creation: Creating an object opens an existing file for both reading and writing. Object creation fails if the file does not roReadWriteFile
exist. The current position is set to the beginning of the file.

CreateObject("roReadWriteFile", filename As String)

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifReadStream

SetReceiveEol(eol_sequence As String) As Void

Sets the EOL sequence when reading from the stream.

ReadByte() As Integer

Reads a single byte from the stream, blocking if necessary. If the EOF is reached or there is an error condition, then a value less than 0 is
returned.

ReadByteIfAvailable() As Integer

Reads a single byte from the stream if one is available. If no bytes are available, it returns immediately. A return value less than 0 indicates either
that the EOF has been reached or no byte is available.

ReadLine() As String

Reads until it finds a complete end of the line sequence. If it fails to find the sequence within 4096 bytes, then it returns the 4096 bytes that are
found. No data is discarded in this case.

ReadBlock(size As Integer) As String

Reads the specified number of bytes. The number is limited to 65536 bytes. In the event of an EOF or an error, fewer bytes than requested will
be returned. Any null bytes in the file will mask any further bytes.

AtEof() As Boolean

Returns True if an attempt has been made to read beyond the end of the file. If the current position is at the end of the file, but no attempt has
been made to read beyond it, this method will return False.

ifStreamSend

SetSendEol(eol_sequence As String) As Void

Sets the EOL sequence when writing to the stream. The default value is CR+LF. If you need to set this value to a non-printing character, use the
.chr() global function

SendByte(byte As Integer) As Void

Writes the specified byte to the stream.

SendLine(string As String) As Void

Writes the specified characters to the stream followed by the current EOL sequence.

SendBlock(a As Dynamic) As Void

Writes the specified characters to the stream. This method can support either a string or an . If the block is a string, any null bytes will roByteArray
terminate the block.

Flush()

AsyncFlush()

ifStreamSeek

SeekAbsolute(offset As Integer) As Void

Seeks the specified offset. If the offset is beyond the end of the file, then the file will be extended upon the next write and any previously
unoccupied space will be filled with null bytes.

SeekRelative(offset As Integer) As Void

Seeks to the specified offset relative to the current position. If the ultimate offset is beyond the end of the file, then the file will be extended as
described in .SeekAbsolute()

SeekToEnd() As Void

Seeks to the end of the file.

CurrentPosition() As Integer

Retrieves the current position within the file.

Hashing and Storage Objects

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This section describes objects related to local storage and the player registry, as well as generating data structures and hashing files.

roBlockCipher
roBrightPackage
roDiskErrorEvent
roDiskMonitor
roHashGenerator
roPassKey
roRegistry
roRegistrySection
roSqliteDatabase
roSqliteEvent
roSqliteStatement
roStorageAttached, roStorageDetached
roStorageHotplug
roStorageInfo
roVirtualMemory

roBlockCipher

ON THIS PAGE

ifBlockCipher
SetIV(iv As Object) As Void
Encrypt(key As Object, plaintext As Object) As roByteArray
Decrypt(key As Object, cipher_text As Object) As roByteArray

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object provides a means for symmetric block encryption. It currently supports AES and CBC ciphers, at block sizes of 128, 192, or 256 bits.

Object Creation: The object is created with an associative array representing a set of parameters.roBlockCipher

CreateObject("roBlockCipher", parameters As roAssociativeArray)

The associative array should contain the following parameters:

mode: , , or "aes-128-cbc" "aes-192-cbc" "aes-256-cbc"

http://docs.brightsign.biz/display/DOC/roCreateFile
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

padding: or . The object defaults to zero padding if this parameter is omitted."zero" "pkcs7"

Padding is required for inputs that are not an exact multiple of the cipher block size. Specifying will add padding only when needed, while "zero"
specifying always adds padding, even if the data is already a multiple of the block size (in this case, an entire block will be added). "pkcs7"
PKCS#7 padding is automatically removed upon decryption, and zero padding will be retained since there are no means to unambiguously
distinguish pad values from data.

ifBlockCipher

SetIV(iv As Object) As Void

Sets the Initialization Vector (IV) for CBC (Cipher-Block-Chaining) modes. If the supplied IV is shorter than required, then it will be zero padded
(passing an empty string will set the vector to all zeroes). The IV will typically contain arbitrary characters and be in the form of an , roByteArray
though it can also be a string.

Encrypt(key As Object, plaintext As Object) As roByteArray

Uses the specified key to encrypt the plaintext parameter, which can be passed as either a string or an .roByteArray

Decrypt(key As Object, cipher_text As Object) As roByteArray

Uses the specified key to decrypt cipher text, which should be passed as an . Because the cipher text is encrypted, it can contain any roByteArray
character.

Example
' This is Case#4 from RFC3602
key = CreateObject("roByteArray")
iv = CreateObject("roByteArray")
plain = CreateObject("roByteArray")
key.FromHexString("56e47a38c5598974bc46903dba290349")
iv.FromHexString("8ce82eefbea0da3c44699ed7db51b7d9") plain.FromHexString
("a0a1a2a3a4a5a6a7a8a9aaabacadaeafb0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccd
cecfd0d1d2d3d4d5d6d7d8d9dadbdcdddedf")
c = CreateObject("roBlockCipher", { mode: "aes-128-cbc" })
c.SetIV(iv)
crypt = c.Encrypt(key, plain)
result = crypt.ToHexString()
expected = UCase
("c30e32ffedc0774e6aff6af0869f71aa0f3af07a9a31a9c684db207eb0ef8e4e35907aa632c3ffdf868bb7b29d3d
46ad83ce9f9a102ee99d49a53e87f4c3da55")

' Decrypt example to recover the encrypted data
c.SetIV(iv)
roundtrip = c.Decrypt(key, crypt)

' Second example selecting PKCS#7 padding
c = CreateObject("roBlockCipher", { mode: "aes-128-cbc", padding: "pkcs7" })

roBrightPackage

ON THIS PAGE

Limitations

ifBrightPackage
Unpack(path As String) As Void
SetPassword(password As String) As Void
GetFailureReason() As String
UnpackFile(a As String, b As String) As Boolean

Using roBrightPackage for Content Updates
Unpacking Encrypted Archives

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

An object represents a file, which can include arbitrary content or be installed on a storage device to provide content and roBrightPackage .zip
script updates (for example, to distribute updates via USB thumb drives).

Object Creation: The object is created with a filename parameter that specifies the name of the file.roBrightPackage .zip

CreateObject("roBrightPackage", filename As String)

Limitations

The object supports files that are smaller than 4GB only.roBrightPackage .zip

Supported Technologies

deflate32 (with default options)
PPMd (with default options)
WinZip (with "No compression", "Maximum", and "SuperFast" options; other options, including "Enhanced Deflate", are not supported)
AES encryption

Unsupported Technologies

bzip2
LZMA
Deflate64
zip64 (i.e. the compression software built in to Windows Explorer)

ifBrightPackage

Unpack(path As String) As Void

Extracts the file to the specified destination path. Any preexisting files in the target directory will be deleted as part of this operation. Providing .zip
a destination path of "SD:/" will wipe all preexisting files from the card and extract the contents to the root folder..zip

SetPassword(password As String) As Void

Provides the password specified when the file was created. This method supports AES 128 and 256 bit encryption, as generated by WinZip..zip

GetFailureReason() As String

UnpackFile(a As String, b As String) As Boolean

Example
package = CreateObject("roBrightPackage", "newfiles.zip")
package.SetPassword("test")
package.Unpack("SD:/")

ifBrightPackage is a legacy interface. We recommend you use instead to achieve better functionality.roAssetPool

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

1.
2.
3.

Using roBrightPackage for Content Updates

BrightSign players check storage devices for autorun scripts in the following order:

External USB devices 1 through 9
SD
µSD

In addition to looking for scripts, BrightSign players look for files that contain the script name . If an autorun.brs autorun.zip autozip.brs autorun.zip
file with an file is found, and can be decrypted, then the player will execute the file.autozip.brs autozip.brs autozip.brs

The script should unpack the contents of the file to an installed storage device and reboot to complete the update:autozip.brs autorun.zip

Example
package = CreateObject("roBrightPackage", "SD:/autorun.zip")
package.Unpack("SD:/")
MoveFile("SD:/autorun.zip", "SD:/autorun.zip_invalid")
RebootSystem()

Unpacking Encrypted Archives

If the file is encrypted, then the player uses the password stored in the , in the section "security" under the name "autozipkey," autorun.zip registry
to decrypt the file.

Extended Example
' Content update application

r=CreateObject("roRectangle", 20, 668, 1240, 80)
t=CreateObject("roTextWidget",r,1,2,1)
r=CreateObject("roRectangle", 20, 20, 1200, 40)
t.SetSafeTextRegion(r)
t.SetForegroundColor(&hff303030)
t.SetBackgroundColor(&hffffffff)
t.PushString("Updating content from USB drive, please wait...")

package = CreateObject("roBrightPackage", "autorun.zip")
package.SetPassword("test")
package.Unpack("SD:/")
package = 0

t.Clear()
t.PushString("Update complete - remove USB drive to restart.")

while true
 sleep(1000)

Important

The file cannot reference any external files, as it is the only file to be automatically uncompressed by a BrightSign player autozip.brs
prior to execution.

 usb_key = CreateObject("roReadFile", "USB1:/autorun.zip")
 if type(usb_key) <> "roReadFile" then
 a=RebootSystem()
 endif
 usb_key = 0
end while

roDiskErrorEvent

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifDiskErrorEvent
GetDiskError() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is returned while waiting on a message port that is connected to an object.roDiskMonitor

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifDiskErrorEvent

GetDiskError() As Object

Returns an containing the following parameters:roAssociativeArray

Key Type Description

source roString The error type

time roDateTime The time at which the error occurred (with
millisecond accuracy)

device roString The internal name for the device generating
the error

error roString A description of the error (e.g."Timeout")

param roString The error parameter (use depends on type
of error (e.g. the sector number))

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Example
aa = msgp.GetDiskError()
report = "Time: " + aa["Time"] + "Error: " + aa["source"] + " " + aa["error"] + " " + aa
["device"] + " " + aa["param"]

roDiskMonitor

ON THIS PAGE

ifMessagePort
SetPort(port As roMessagePort)

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object provides access to low-level information about disk errors. It provides an event-based interface that delivers objects roDiskErrorEvent
via . Error messages are held for five seconds before delivery to minimize the chance of spurious error reports. Errors are not roMessageport
reported if the disk is removed during this five second interval because disk-removal detection takes several seconds. This allows for long-term
monitoring of occasional media errors.

Object Creation: The object is created with no parameters.roDiskMonitor

CreateObject("roDiskMonitor")

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type to the attached message port. roDiskErrorEvent

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

Example

This example uses an implicit conversion of . You could also use . roDateTime roDateTime.GetString()

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

diskmon=CreateObject("roDiskMonitor")

msgp=CreateObject("roMessagePort")
diskmon.Setport(msgp)

roHashGenerator

ON THIS PAGE

ifHashGenerator
Hash(obj As Object) As Object
SetHmacKey(key As Dynamic) As Boolean
SetObfuscatedHmacKey(key As String) As Boolean
GetFailureReason() As String

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object allows you to generate a variety of message digests.

Object Creation: The hashing algorithm is specified when creating the object.roHashGenerator

CreateObject("roHashGenerator", algorithm As String)

The algorithm parameter accepts the following strings:

"SHA256"
"SHA384"
"SHA512"
"SHA1"
"MD5"
"CRC32"

ifHashGenerator

Hash(obj As Object) As Object

Hashes the payload, which can be supplied in the form of a string (or any object implementing) or an . The hash is returned ifString roByteArray
as an .roByteArray

SetHmacKey(key As Dynamic) As Boolean

Supplies a cryptographic key for the hashing function. This method accepts a plain-text key.

SetObfuscatedHmacKey(key As String) As Boolean

Supplies a cryptographic key for the hashing function. This method accepts a key that is obfuscated using a shared secret.

GetFailureReason() As String

Note

CRC32 is only available on firmware versions 4.4.x or later.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

roPassKey

ON THIS PAGE

ifPassKey
GenerateKey(password As Object, salt As Object) As roByteArray
GenerateSalt(length As Integer) As roByteArray

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object provides a means for generating keys (hashes) from a password and salt.

Object Creation: The object is passed an associative array that specifies the generation methods and cipher.

CreateObject("roPassKey", parameters As roAssociativeArray)

The associative array should contain the following parameters:

method: The key derivation method. Currently, only "pbkdf2" can be specified.

keyfn: The pseudorandom function (PRF). Currently, only "hmac-sha256" can be specified.

keylen: The key length

iterations: The number of iterations

ifPassKey

GenerateKey(password As Object, salt As Object) As roByteArray

Generates a key using the supplied password and salt. The parameters may be passed as either strings or instances. The generated roByteArray
instance may contain all possible byte values, including NUL.roByteArray

GenerateSalt(length As Integer) As roByteArray

Generates a salt of the specified length. This salt can be used when calling the method. The generated instance GenerateKey() roByteArray
may contain all possible byte values, including NUL.

Example
' Create input test data
salt = CreateObject("roByteArray")
pass = CreateObject("roByteArray")
pass.FromAsciiString("password")
salt.FromAsciiString("salt")
' Create the key generator
pk = CreateObject("roPassKey", { method: "pbkdf2", keyfn: "hmac-sha256", keylen: 32,
iterations: 4096 })
' key with be a roByteArray
key = pk.GenerateKey(pass, salt)

roRegistry

ON THIS PAGE

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifRegistry
GetSectionList() As roList
Delete(section As String) As Boolean
Flush() As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

The registry is an area of memory where a small number of persistent settings can be stored. Access to the registry is available through the roReg
 object.istry

This object is created with no parameters:

CreateObject("roRegistry")

ifRegistry

GetSectionList() As roList

Returns a list with one entry for each registry section.

Delete(section As String) As Boolean

Deletes the specified section and returns an indication of success.

Flush() As Boolean

Flushes the registry out to persistent storage.

roRegistrySection

ON THIS PAGE

ifRegistrySection
Read(key As String) As String
Write(key As String, value As String) As Boolean
Delete(key As String) As Boolean
Exists(key As String) As Boolean
Flush() As Boolean
GetKeyList() As roList

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object represents a section of the registry, enabling the organization of settings within the registry. It allows the section to be read or written.

Object Creation: This object must be supplied with a registry-section name upon creation.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

CreateObject("roRegistrySection", section As String)

Writes do not always take effect immediately to prevent the system from exceeding the maximum number of writes on the onboard persistent
storage. At most, 60 seconds after a write to the registry, the newly written data will be automatically written out to persistent storage. If, for some
reason, the change must be written immediately, then the method should be called. All changes will be written automatically prior to Flush()
exiting the application.

ifRegistrySection

Read(key As String) As String

Reads and returns the value of the specified key. Performing on an entry that does not exist, or on a key within a section that does not Read()
exist, will return an empty string ("").

Write(key As String, value As String) As Boolean

Replaces the value of the specified key.

Delete(key As String) As Boolean

Deletes the specified key.

Exists(key As String) As Boolean

Returns True if the specified key exists.

Flush() As Boolean

Flushes the contents of the registry out to persistent storage.

GetKeyList() As roList

Returns a list containing one entry per registry key in this section.

Example
registrySection = CreateObject("roRegistrySection", "widget-usage")
' An empty entry will read as an empty string and therefore be converted to zero.
hits = val(registrySection.Read("big-red-button-hits"))
hits = hits + 1
registrySection.Write("big-red-button-hits", strI(hits))

roSqliteDatabase

ON THIS PAGE

ifSqliteDatabse
Open(path As String) As Boolean
Create(path As String) As Boolean
Close()
CreateStatement(sql_text As String) As Object
RunBackground(sql_text As String, associative_array As Object) As Integer
SetMemoryLimit(limit As Integer)

ifMessagePort
SetPort(port As roMessagePort)

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This is the main SQLite object that "owns" the database. You can create as many of these objects as you need.

ifSqliteDatabse

Open(path As String) As Boolean

Opens an existing database file. This method returns True upon success.

Create(path As String) As Boolean

Creates a new, empty database file. This method returns True upon success.

Passing to this method creates a database in non-persistent storage. This is useful for high-volume database applications that ":memory:"
might cause wear issues on an SD card.

Close()

Closes an open database.

CreateStatement(sql_text As String) As Object

Creates a new object using the specified SQL string.roSqliteStatement

RunBackground(sql_text As String, associative_array As Object) As Integer

Runs the specified SQL statement in the background and binds variables using the passed .roAssociativeArray

SetMemoryLimit(limit As Integer)

Sets the "soft" memory limit under which SQLite will attempt to remain (see the SQLite documentation for details).

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type to the attached message port.roSqliteEvent

Example: Creating a Database
db = CreateObject("roSqliteDatabase")

print db

openResult = db.Create("SD:/test.db")

if openResult
 print "Created OK"
else
 print "Creation FAILED"

The method sets global parameters. It must, therefore, be called before any other calls are made on the SetMemoryLimit()
database object.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

 end
endif

Example: Creating a Table in a Database
createStmt = db.CreateStatement("CREATE TABLE playback (md5 text PRIMARY KEY, path PATH,
playback_count INT);")

print createStmt

if type(createStmt) <> "roSqliteStatement" then
 print "We didn't get a statement returned!!"
 end
endif

sqlResult = createStmt.Run()

print sqlResult

if sqlResult = SQLITE_COMPLETE
 print "Table Created OK"
else
 print "Table Creation FAILED"
endif

createStmt.Finalise()

roSqliteEvent

ON THIS PAGE

ifSqliteEvent
GetTransactionId() As Integer
GetSqlResult() As Integer

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This event object is returned when a operation is called by the associated object.RunBackground() roSqliteDatabase

ifSqliteEvent

GetTransactionId() As Integer

Returns an integer that matches the result of the originating operation.RunBackground()

GetSqlResult() As Integer

Returns the result code returned by the method. The possible return values are identical to the method:roSqliteStatement.Run() Run()

100: Statement complete
101: Busy
102: Rows available

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

roSqliteStatement

ON THIS PAGE

ifSqliteStatement
BindByName(associative_array As Object) As Boolean
BindByOffset(associative_array/enumerable As Object) As Boolean
BindText(variable/index As Object, value As String) As Boolean
BindInteger(variable/index As Object, value As Integer) As Boolean
Run() As Integer
RunBackground() As Integer
GetData() As Object
Finalise()

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is created by calling the method on an object.CreateStatement() roSqliteDatabase

ifSqliteStatement

All methods return True upon success.bind

BindByName(associative_array As Object) As Boolean

Binds the SQL variable(s) using the names contained in the SQL statement.

BindByOffset(associative_array/enumerable As Object) As Boolean

Binds the SQL variable(s) using the index contained in the SQL statement. If passed an associative array, this method will convert the keys of the
associative array into numeric offsets when binding. If passed an enumerable object (e.g.), it will bind the values of the enumerable in the roArray
order that they are stored.

BindText(variable/index As Object, value As String) As Boolean

Binds the SQL variable indicated by the name or index parameter to the passed string value.

BindInteger(variable/index As Object, value As Integer) As Boolean

Binds the SQL variable indicated by the name or index parameter to the passed integer value.

Run() As Integer

Runs the SQL statement immediately and waits for the integer result. The following are possible integer result codes:

100: Statement complete
101: Busy
102: Rows available

RunBackground() As Integer

Runs the SQL statement in the background. You can use to set a message port that will receive an roSqliteDatabase.SetPort() roSqliteEvent
message at a later point. The RunBackground() call will result in an integer transaction ID, which will appear in the message that roSqliteEvent
matches the transaction.

Note

This method can be used as the asynchronous alternative to the method. Run()

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

GetData() As Object

Returns an associative array of name/value pairs that are available after a SELECT (or similar) operation.

Finalise()

Finalizes the statement. This method should be applied to statements before the parent database is closed. The object should not be used after
this method is called. Also note that objects are automatically finalized when they are deleted.

The following script inserts into a table using the method:BindByName()

insertStmt = db.CreateStatement("INSERT INTO playback (md5,path,playback_count) VALUES(:
md5_param,:path_param,:pc_param);")

print insertStmt

if type(insertStmt) <> "roSqliteStatement" then
 print "We didn't get a statement returned!!"
 end
endif

params = { md5_param: "ABDEF12346", path_param: "/foo/bar/bing/bong", pc_param: 11 }

bindResult = insertStmt.BindByName(params)

if bindResult
 print "BindByName OK"
else
 print "BindByName FAILED"
 end
endif

sqlResult = insertStmt.Run()

print sqlResult

if sqlResult = SQLITE_COMPLETE
 print "Table Insertion OK"
else
 print "Table Insertion FAILED"
endif

insertStmt.Finalise()

The following script inserts into a table in the background:

' This examples assume you have set a message port on your roSqliteDatabase instance
'

insertStmt = db.CreateStatement("INSERT INTO playback (md5,path,playback_count) VALUES(:
md5_param,:path_param,:pc_param);")

print insertStmt

if type(insertStmt) <> "roSqliteStatement" then
 print "We didn't get a statement returned!!"
 end
endif

params = { md5_param: "ABDEF12348", path_param: "/foo/bar/bing/bong", pc_param: 13 }

bindResult = insertStmt.BindByName(params)

if bindResult
 print "BindByName OK"
else
 print "BindByName FAILED"
 end
endif

expectedId = insertStmt.RunBackground()

e = mp.WaitMessage(10000)
if e <> invalid then
 if type(e) = "roSqliteEvent" then
 transId = e.GetTransactionId()
 sqlResult = e.GetSqlResult()
 print transId
 print sqlResult
 if transId <> expectedId then
 print "Incorrect transaction Id"
 end
 endif
 if sqlResult <> SQLITE_COMPLETE then
 print "SQL Insertion Failed"
 end
 endif
 else
 print "RunBackground() - Wrong event - FAILED"
 end
 endif
else
 print "RunBackground() - No Response - FAILED"
 end
endif

' You don't need to call Finalise() since that'll be done by the background processor.

The following script queries from a table:

selectStmt = db.CreateStatement("SELECT * FROM playback;")

if type(selectStmt) <> "roSqliteStatement" then
 print "We didn't get a statement returned!!"
 end
endif

sqlResult = selectStmt.Run()

print sqlResult

while sqlResult = SQLITE_ROWS
 resultsData = selectStmt.GetData()
 print resultsData;
 sqlResult = selectStmt.Run()
end while

selectStmt.Finalise()

roStorageAttached, roStorageDetached

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifString
GetString() As String
SetString(a As String)

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

These event objects are generated by the object whenever a storage device becomes attached or detached from the player.roStorageHotplug

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via SetUserData(). It will return Invalid if no data has been set.

ifString

GetString() As String

SetString(a As String)

roStorageHotplug

ON THIS PAGE

ifStorageHotplug
GetStorageStatus(drive As String) As roAssociativeArray

ifFailureReason
GetFailureReason() As String

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifMessagePort
SetPort(port As roMessagePort)

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

This object provides messages when storage devices appear and messages when storage devices roStorageAttached roStorageDetached
disappear. An event is not delivered until the filesystem is mounted.roStorageAttached

There is currently no way to poll for media.

Object Creation: The object is created with no parameters.roStorageHotplug

CreateObject("roStorageHotplug")

ifStorageHotplug

GetStorageStatus(drive As String) As roAssociativeArray

Returns the current status of a storage device ("SD:", "SSD:", "USB:"), even if it is not mounted. This method returns an associative array
containing the following:

Key Value Type Description

present Boolean Indicates whether the specified device is
present.

mounted Boolean Indicates whether the specified device is
mounted.

corrupt Boolean Indicates whether the specified device is
believed to be corrupt.

checking Boolean Indicates whether the specified device is
currently being checked.

Example
 status = CreateObject("roStorageHotplug").GetStorageStatus("SSD:")
 if not status.mounted and not status.checking and status.present then
 ' Should ask for confirmation here
 FormatDrive("SSD:")
 end if

ifFailureReason

GetFailureReason() As String

Returns additional diagnostic information if a method returns False.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via SetUserData(). It will return Invalid if no data has been set.

ifMessagePort

SetPort(port As roMessagePort)

Note

The results of the method are unreliable when called with a "USBn:" parameter, where "n" is a positive integer GetStorageStatus()
indicating a USB storage device when multiple USB devices are connected to the player.

Posts messages of type and to the attached message port.roStorageAttached roStorageDetached

In order to avoid race conditions at startup, you should check for any storage devices that might have existed prior to the message port being set.
We recommend doing this after the object is created and the message port is set, but before instructing the script to wait for any events.

Example
Sub Main()
 mp = CreateObject("roMessagePort")
 sh = CreateObject("roStorageHotplug")
 gpio = CreateObject("roControlPort", "brightsign")

 sh.SetPort(mp)
 gpio.SetPort(mp)

 finished = false
 while not finished
 ev = mp.WaitMessage(0)
 if type(ev) = "roControlDown"
 finished = true
 else if type(ev) = "roStorageAttached"
 print "ATTACHED "; ev.GetString()
 else if type(ev) = "roStorageDetached"
 print "DETACHED "; ev.GetString()
 else
 print type(ev)
 stop
 end if
 end while
End Sub

roStorageInfo

ON THIS PAGE

Drive Specifications

ifStorageInfo
GetFailureReason() As String
GetBytesPerBlock() As Integer
GetSizeInMegabytes() As Integer
GetUsedInMegabytes() As Integer
GetFreeInMegabytes() As Integer
GetFileSystemType() As String
GetStorageCardInfo() As roAssociativeArray

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

This object is used to report storage device usage information.

Object Creation: The object is created with a parameter that specifies the path of the storage device. The path does not need to roStorageInfo
extend to the root of the storage device.

CreateObject("roStorageInfo", path As String)

Drive Specifications

Use the following string values to specify different storage drives:

"USB1:" – The drive for USB storage devices connected to the player

"SD:" – The primary SD or microSD drive on the player.

"SD2:" – The internal microSD drive on the player (4Kx42, XDx32 models only)

"SSD:" – The internal SSD on the player (XTx43, XDx33 models only)

ifStorageInfo

GetFailureReason() As String

Yields additional useful information if a function return indicates an error.

GetBytesPerBlock() As Integer

Returns the size of a native block on the filesystem used by the specified storage device.

GetSizeInMegabytes() As Integer

Returns the total size (in mebibytes) of the storage device.

GetUsedInMegabytes() As Integer

Returns the amount (in mebibytes) of space currently used on the storage device. This amount includes the size of the pool because this class
does not integrate pools into its calculations.

GetFreeInMegabytes() As Integer

Returns the available space (in mebibytes) on the storage device.

GetFileSystemType() As String

Returns a string describing the type of filesystem used on the specified storage. The following are potential values:

"exfat"
"ext3"
"ext4"
"fat12"
"fat16"
"fat32"
"hfs"
"hfsplus"
"ntfs"

GetStorageCardInfo() As roAssociativeArray

Returns an associative array containing details of the storage device hardware. For SD cards, the returned data may include the following:

sd_mfr_id Integer

Important

On some filesystems that have a portion of space reserved for the super user, the following expression may not be
true: GetUsedInMegabytes() + GetFreeInMegabytes() == GetSizeInMegabytes()

Card manufacturer ID as assigned by the
SD Card Association

sd_oem_id String Two-character card OEM identifier as
assigned by the SD Card Association

sd_product_name String Product name, assigned by the card
manufacturer (5 bytes for SD, 6 bytes for
MMC)

sd_spec_vers Integer Version of SD spec to which the card
conforms

sd_product_rev String Product revision assigned by the card
manufacturer

sd_speed_class String Speed class (if any) declared by the card

sd_au_size Integer Size of the SD AU in bytes.

Example
si=CreateObject("roStorageInfo", "SD:/")
Print si.GetFreeInMegabytes(); "MiB free"

roVirtualMemory

ON THIS PAGE

ifVirtualMemory
AddSwapFile(parameters As roAssociativeArray) As Boolean
RemoveSwapFile(filename As String) As Boolean

ifFailureReason
GetFailureReason() As String

The object allows you to create a virtual memory repository for the Chromium HTML engine. This allows Chromium to roVirtualMemory
automatically swap unused elements out of physical memory.

This object is only available on platforms that can support SSD/mSATA drives: XTx43, XDx33, and 4Kx42.

Object Creation: This object is instantiated without parameters.

CreateObject("roVirtualMemory")

ifVirtualMemory

AddSwapFile(parameters As roAssociativeArray) As Boolean

Adds a virtual memory repository to local storage. This method accepts an associative array with the following parameters:

filename:(string) The URI of the swap file to be created. It is possible to specify a file location other than the SSD/mSATA drive, but it
is not recommended.
megabytes:(Integer) The size of the swap file to be created.

If the specified file does not already exist, it will be created. If it already exists, the size will be modified. Either way, this operation can take some
time, but it should only need to be called once.

RemoveSwapFile(filename As String) As Boolean

Removes a swap file with the specified filename.

ifFailureReason

GetFailureReason() As String

Returns additional useful information when a method on the interface returns False.ifVirtualMemory

Content Management Objects

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This section describes objects that enable downloading, storage, and retrieval of content from a remote CMS.

roAssetCollection
roAssetFetcher
roAssetFetcherEvent
roAssetFetcherProgressEvent
roAssetPool
roAssetPoolFiles
roAssetRealizer
roAssetRealizerEvent
roSyncSpec

roAssetCollection

ON THIS PAGE

ifAssetCollection
GetFailureReason() As String
AddAsset(asset_info As Dynamic) As Boolean
AddAssets(asset_info_array As Dynamic) As Boolean
GetAssetList() As roList

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is used to represent a collection of assets.

Object Creation: The object is created with no parameters.roAssetCollection

CreateObject("roAssetCollection")

You can populate an asset collection with individual calls to or . You can also populate an asset collection using the AddAsset() AddAssets() r
 method, as shown below:oSyncSpec.GetAssets()

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

assetCollection = CreateObject("roAssetCollection")

localCurrentSync = CreateObject("roSyncSpec")
if localCurrentSync.ReadFromFile("local-sync.xml") then
 assetCollection = localCurrentSync.GetAssets("download")
endif

ifAssetCollection

GetFailureReason() As String

AddAsset(asset_info As Dynamic) As Boolean

Adds a single asset from an associative array or JSON-formatted string. If the argument is a string, it should match the format used for a single
asset in a JSON sync spec.

AddAssets(asset_info_array As Dynamic) As Boolean

Adds multiple assets from an enumerable object (an , , or string containing a JSON-formatted array) that contains compatible roList roArray
associative arrays.

GetAssetList() As roList

Returns an instance containing associative arrays of asset metadata. This method is not efficient and is, therefore, recommended for roList
debugging and diagnostic purposes only.

Each associative array contains the following:

name String Required The name of the asset. For a file to
be realized, it must have a valid
filename (i.e. no slashes).

link String Required The download location of the asset

size Integer/String Optional The size of the asset. Use a string if
you want to specify a number that is
too large to fit into an integer (this
allows file sizes larger than 2 GB).

hash String Optional A string in the form of
"hash_algorithm:hash". See the next
table for available hash algorithms.

change_hint String Optional Any string that will change in
conjunction with the file contents.
This is not necessary if the link or
hash is supplied and always
changes.

auth_inherit Boolean Optional Indication of whether or not this
asset uses authenticroAssetFetcher
ation information. The default is set
to True.

auth_user Boolean Optional User to utilize for authentication
when downloading only this asset.
This automatically disables
"auth_inherit".

auth_password Boolean Optional Password to use when downloading
only this asset. This automatically
disables "auth_inherit".

headers_inherit Boolean Optional The command to pass any header
supplier to when roAssetFetcher
fetching this asset. The default is
true.

Important

Hash algorithms:

sha1 If a sha1 is available, you can validate the hash as the file is
downloaded. If such a hash is available, it should be used. The link
and change_hint properties have no effect on the pool file name, so
the file is shared even if it is downloaded from different locations.

besha1 This algorithm hashes some of the file along with the file size in
order to verify the contents. It also moves the link and change_hint
properties into the pool filename.

MD5 Uses the MD5 hash algorithm to validate files.

(none) Without any hash, the file cannot be verified as it is downloaded,
and the system will rely on the link and change_hint properties to
give the pool a unique filename.

roAssetFetcher

ON THIS PAGE

ifAssetFetcher
GetFailureReason() As String
SetUserAndPassword(user As String, password As String) As Boolean
EnableUnsafeAuthentication(enable As Boolean) As Boolean
EnableUnsafeProxyAuthentication(enable As Boolean) As Boolean
EnableEncodings(enable As Boolean) As Boolean
AsyncDownload(assets As roAssetCollection) As Boolean
AsyncSuggestCache(a As Object) As Boolean
AsyncCancel() As Boolean
EnablePeerVerification(verification As Boolean) As Boolean
EnableHostVerification(verification As Boolean) As Boolean
SetCertificatesFile(filename As String) As Boolean
AddHeader(name As String, value As String) As Boolean
SetHeaders(headers As roAssociativeArray) As Boolean
SetProxy(proxy As String) As Boolean
SetProxyBypass(hostnames As Array) As Boolean
SetFileProgressIntervalSeconds(interval As Integer) As Boolean
SetFileRetryCount(count As Integer) As Boolean
SetRelativeLinkPrefix(prefix As String) As Boolean
BindToInterface(interface As Integer) As Boolean
SetMaximumReceiveBytesPerSecond(bytes_per_second as Double) As Boolean
SetMinimumTransferRate(bytes_per_second As Integer, period_in_seconds As Integer) As Boolean

ifMessagePort
SetPort(port As roMessagePort)

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object contains functions for downloading files to the pool.

Any "optional" fields that are specified when populating the pool must also be specified when retrieving assets from the pool (i.e. they
become "mandatory" once they are used for an asset). For example, if the hash value is specified when fetching into the pool, then it
must also be specified when attempting to refer to files in the pool.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Object Creation: The object must be passed an instance upon creation.roAssetFetcher roAssetPool

CreateObject("roAssetFetcher", pool As roAssetPool)

Example
Pool = CreateObject("roAssetPool", "pool")
Fetcher = CreateObject("roAssetFetcher", Pool)

ifAssetFetcher

GetFailureReason() As String

Returns an error string if an method has failed (this is usually indicated by returning False). The error string may help diagnose roAssetFetcher
the failure.

SetUserAndPassword(user As String, password As String) As Boolean

Sets the default user and password strings to be used for all download requests that are not otherwise marked using the following attributes: <aut
h inherit=”no”> or <auth user=”user” password =”password”>.

EnableUnsafeAuthentication(enable As Boolean) As Boolean

Supports basic HTTP authentication if True. HTTP authentication uses an insecure protocol, which might allow others to easily determine the
password. The object will still prefer the stronger digest HTTP if it is supported by the server. If this method is False (which is the roAssetFetcher
default setting), it will refuse to provide passwords via basic HTTP authentication, and any requests requiring this authentication will fail.

EnableUnsafeProxyAuthentication(enable As Boolean) As Boolean

Supports basic HTTP authentication against proxies if True (which, unlike EnableUnsafeAuthentication(), is the default setting). HTTP
authentication uses an insecure protocol, which might allow others to easily determine the password. If this method is False, it will refuse to
provide passwords via basic HTTP authentication, and any requests requiring this authentication type will fail.

EnableEncodings(enable As Boolean) As Boolean

Enables HTTP compression, which communicates to the server that the system can accept any encoding that the object is roAssetFetcher
capable of decoding by itself (this behavior is enabled by default). Supported encodings currently include "deflate" and "gzip", which allow for
transparent compression of responses. Clients of the instance see only the decoded data and are unaware of the encoding being roAssetFetcher
used.

AsyncDownload(assets As roAssetCollection) As Boolean

Begins populating the asset pool using the files listed in the passed instance. Files that are not already in the pool will be roAssetCollection
downloaded automatically. Events are raised during the download process to indicate whether individual file downloads have succeeded or failed;
finally, a single event will be raised indicating whether the entire asset collection has been downloaded successfully or not. See the roAssetFetche

and entries for more details.rEvent roAssetFetcherProgressEvent

AsyncSuggestCache(a As Object) As Boolean

AsyncCancel() As Boolean

Cancels any pending “Async” requests. Note that, prior to and during this method call, events associated with an asynchronous action may be
queued. No more events will be queued once this call returns. We recommend collecting any pending events prior to calling any further “Async”
methods on the same object to avoid confusion.

EnablePeerVerification(verification As Boolean) As Boolean

Enables checking of TLS/SSL certificates. This method is set to by default. Disabling peer verficiation allows you to bypass an expired true
certificate check.

EnableHostVerification(verification As Boolean) As Boolean

Enables checking of the TLS/SSL certificate for the correct hostname. This method is set to by default. Disabling host verification allows true
you to accept a certificate being sent for the wrong hostname.

SetCertificatesFile(filename As String) As Boolean

Configures an alternative set of CA certificates for the connection. This method is useful if the connection certificates are signed by a CA that is
not on the the default trusted list (for example, if your organization uses a private CA hierarchy that is not signed by a well known root CA). This
method replaces the default list, so the passed certificate file must contain all acceptable CA certificates required for the connection.

AddHeader(name As String, value As String) As Boolean

Specifies a header that will be passed to HTTP requests made by the instance. A particular download will not include the header roAssetFetcher
if it has the attribute in the sync spec.<headers inherit=”no”>

SetHeaders(headers As roAssociativeArray) As Boolean

Specifies all headers that will be passed to HTTP requests made by the instance. This method removes any previously set roAssetFetcher
headers. A particular download will not include the headers if it has the <headers inherit=”no”> attribute in the sync spec.

SetProxy(proxy As String) As Boolean

Sets the name or address of the proxy server that will be used by the instance. The proxy string should be formatted as roAssetFetcher
"http://user:password@hostname:port". It can contain up to four "*" characters; each "*" character can be used to replace one octet from the
current IP address. For example, if the IP address is currently 192.168.1.2, and the proxy is set to "proxy-*-*", then the player will attempt to use a
proxy named "proxy-192.168".

SetProxyBypass(hostnames As Array) As Boolean

Exempts the specified hosts from the proxy setting. The passed array should consist of one or more hostnames. The instance will roAssetFetcher
attempt to reach the specified hosts directly rather than using the proxy that has been specified with the method. For example, the SetProxy()
hostname "example.com" would exempt "example.com", "example.com:80", and "www.example.com" from the proxy setting.

SetFileProgressIntervalSeconds(interval As Integer) As Boolean

Specifies the interval (in seconds) between progress events when an individual file is being downloaded. Setting the interval to -1 disables all
progress events. Setting the interval to 0 specifies that events should be generated as often as possible, though this will slow down the transfer
process. If the interval is set to 0 or any positive integer, events will always be generated at the start and end of the file download irrespective of
elapsed time. The default interval is 300 seconds.

SetFileRetryCount(count As Integer) As Boolean

Specifies the maximum number of times each file download will be retried before moving on to the next file download. The default retry count is
five.

SetRelativeLinkPrefix(prefix As String) As Boolean

Specifies a prefix that will be appended to the front of relative links in the sync spec. Normally, this method is used to make file:/// URIs drive
agnostic, but it can also be used to reduce the size of the sync spec if all files are stored in the same place. Non-relative links are not affected by
this method.

BindToInterface(interface As Integer) As Boolean

Ensures that the HTTP request goes out over the specified network interface (0 for Ethernet or 1 for WiFi). The default behavior (which can be
specified by passing -1) is to send requests using the most appropriate network interface, which may depend on the routing metric configured via
the object. If both interfaces are on the same layer 2 network, this method may not work as expected due to the Linux roNetworkConfiguration
weak-host model.

SetMaximumReceiveBytesPerSecond(bytes_per_second as Double) As Boolean

Limits the rate at which downloads are performed by the instance. The source data rate isn't under the direct control of the roAssetFetcher
BrightSign player, but download rates should average below the specified value over time.

This method returns on success and on failure. In event of failure, the method may provide more true false GetFailureReason()
information.

Important

Peer verficiation and host verification are important security checks that prevent "man-in-the-middle" attacks. These features should
only be disabled after careful consideration of the security implications.

SetMinimumTransferRate(bytes_per_second As Integer, period_in_seconds As Integer) As Boolean

Sets the minimum transfer rate for each file download. A transfer will be terminated if the rate drops below when averaged bytes_per_second
over . Note that if the transfer is over the Internet, you may not want to set to a small number in case period_in_seconds period_in_seconds
network problems cause temporary drops in performance. For large file transfers and a small limit, averaging fifteen bytes_per_second
minutes or more may be appropriate.

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type and to the attached message port.roAssetFetcherEvent roAssetFetcherProgressEvent

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

roAssetFetcherEvent

ON THIS PAGE

ifAssetFetcherEvent
GetEvent() As Integer
GetName() As String
GetFailureReason() As String
GetFileIndex() As Integer
GetResponseCode() As Integer

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This event is generated by an instance when a file transfer succeeds or fails or when population of the asset pool as a whole roAssetFetcher
succeeds or fails.

ifAssetFetcherEvent

GetEvent() As Integer

Returns an integer indicating the result of an download attempt:roAssetFetcher

 1: POOL_EVENT_FILE_DOWNLOADED
-1: POOL_EVENT_FILE_FAILED
 2: POOL_EVENT_ALL_DOWNLOADED
-2: POOL_EVENT_ALL_FAILED

GetName() As String

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

GetFailureReason() As String

Returns additional failure information associated with the event (if any).

GetFileIndex() As Integer

Retrieves the zero-based index from the sync spec of the file associated with the event.

GetResponseCode() As Integer

Returns the protocol response code associated with an event. The following codes indicate success:

200: Successful HTTP transfer
226: Successful FTP transfer
0: Successful local file transfer

For unexpected errors, the return value is negative. There are many possible negative errors from the CURL library, but it is often best to look at
the text version by calling .GetFailureReason()

Here are some potential errors. Not all of them can be generated by a BrightSign player:

Status Name Description

-1 CURLE_UNSUPPORTED_PROTOCOL

-2 CURLE_FAILED_INIT

-3 CURLE_URL_MALFORMAT

-5 CURLE_COULDNT_RESOLVE_PROXY

-6 CURLE_COULDNT_RESOLVE_HOST

-7 CURLE_COULDNT_CONNECT

-8 CURLE_FTP_WEIRD_SERVER_REPLY

-9 CURLE_REMOTE_ACCESS_DENIED A service was denied by the server due to
lack of access. When login fails, this is not
returned.

-11 CURLE_FTP_WEIRD_PASS_REPLY

-13 CURLE_FTP_WEIRD_PASV_REPLY

-14 CURLE_FTP_WEIRD_227_FORMAT

-15 CURLE_FTP_CANT_GET_HOST

-17 CURLE_FTP_COULDNT_SET_TYPE

-18 CURLE_PARTIAL_FILE

-19 CURLE_FTP_COULDNT_RETR_FILE

-21 CURLE_QUOTE_ERROR Failed quote command

-22 CURLE_HTTP_RETURNED_ERROR

-23 CURLE_WRITE_ERROR

-25 CURLE_UPLOAD_FAILED Failed upload command.

-26 CURLE_READ_ERROR Could not open/read from file.

-27 CURLE_OUT_OF_MEMORY

-28 CURLE_OPERATION_TIMEDOUT The timeout time was reached.

-30 CURLE_FTP_PORT_FAILED FTP PORT operation failed.

-31 CURLE_FTP_COULDNT_USE_REST REST command failed.

-33 CURLE_RANGE_ERROR RANGE command did not work.

-34 CURLE_HTTP_POST_ERROR

-35 CURLE_SSL_CONNECT_ERROR Wrong when connecting with SSL.

-36 CURLE_BAD_DOWNLOAD_RESUME Could not resume download.

-37 CURLE_FILE_COULDNT_READ_FILE

-38 CURLE_LDAP_CANNOT_BIND

-39 CURLE_LDAP_SEARCH_FAILED

-41 CURLE_FUNCTION_NOT_FOUND

-42 CURLE_ABORTED_BY_CALLBACK

-43 CURLE_BAD_FUNCTION_ARGUMENT

-45 CURLE_INTERFACE_FAILED CURLOPT_INTERFACE failed.

-47 CURLE_TOO_MANY_REDIRECTS Catch endless re-direct loops.

-48 CURLE_UNKNOWN_TELNET_OPTION User specified an unknown option.

-49 CURLE_TELNET_OPTION_SYNTAX Malformed telnet option.

-51 CURLE_PEER_FAILED_VERIFICATION Peer's certificate or fingerprint wasn't
verified correctly.

-52 CURLE_GOT_NOTHING When this is a specific error.

-53 CURLE_SSL_ENGINE_NOTFOUND SSL crypto engine not found.

-54 CURLE_SSL_ENGINE_SETFAILED Cannot set SSL crypto engine as default.

-55 CURLE_SEND_ERROR, Failed sending network data.

-56 CURLE_RECV_ERROR Failure in receiving network data.

-58 CURLE_SSL_CERTPROBLEM Problem with the local certificate.

-59 CURLE_SSL_CIPHER Could not use specified cipher.

-60 CURLE_SSL_CACERT Problem with the CA cert (path?)

-61 CURLE_BAD_CONTENT_ENCODING Unrecognized transfer encoding.

-62 CURLE_LDAP_INVALID_URL Invalid LDAP URL.

-63 CURLE_FILESIZE_EXCEEDED, Maximum file size exceeded.

-64 CURLE_USE_SSL_FAILED, Requested FTP SSL level failed.

-65 CURLE_SEND_FAIL_REWIND, Sending the data requires a rewind that
failed.

-66 CURLE_SSL_ENGINE_INITFAILED Failed to initialize ENGINE.

-67 CURLE_LOGIN_DENIED User, password, or similar field was not
accepted and login failed .

-68 CURLE_TFTP_NOTFOUND File not found on server.

-69 CURLE_TFTP_PERM Permission problem on server.

-70 CURLE_REMOTE_DISK_FULL Out of disk space on server.

-71 CURLE_TFTP_ILLEGAL Illegal TFTP operation.

-72 CURLE_TFTP_UNKNOWNID Unknown transfer ID.

-73 CURLE_REMOTE_FILE_EXISTS File already exists.

-74 CURLE_TFTP_NOSUCHUSER No such user.

-75 CURLE_CONV_FAILED Conversion failed.

-76 CURLE_CONV_REQD Caller must register conversion callbacks
using the following URL_easy_setopt
options:
CURLOPT_CONV_FROM_NETWORK_FUN
CTION
CURLOPT_CONV_TO_NETWORK_FUNCT
ION
CURLOPT_CONV_FROM_UTF8_FUNCTION

-77 CURLE_SSL_CACERT_BADFILE Could not load CACERT file, missing or
wrong format.

-78 CURLE_REMOTE_FILE_NOT_FOUND Remote file not found.

-79 CURLE_SSH Error from the SSH layer (this is somewhat
generic, so the error message will be
important when this occurs).

-80 CURLE_SSL_SHUTDOWN_FAILED Failed to shut down the SSL connection.

The following error codes are generated by the system software and are outside the range of CURL events:

Status Name Description

-1002 ENOENT The specified file does not exist or cannot
be created.

-10001 Cancelled The operation has been cancelled.

-10002 Exception The operation caused a local exception. Call
GetFailureReason() for more details.

-10003 ERROR_EXCEPTION An unexpected exception occurred.

-10004 ERROR_DISK_ERROR A disk error occurred (usually as a result of
the disk being full).

-10005 ERROR_POOL_UNSATISFIED The expected files are not present in the
pool.

-10006 ERROR_DOWNLOADING_ELSEWHERE The file is being downloaded by another roA
instance.ssetFetcher

-10007 ERROR_HASH_MISMATCH A downloaded file did not match its
checksum or file size.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

roAssetFetcherProgressEvent

ON THIS PAGE

ifAssetFetcherProgressEvent
GetFileName() As String
GetFileIndex() As Integer
GetFileCount() As Integer
GetCurrentFileTransferredMegabytes() As Integer
GetCurrentFileSizeMegabytes() As Integer
GetCurrentFilePercentage() As Float

ifUserData

SetUserData(user_data As Object) As Void
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This event is generated by the object at regular intervals during file downloads. Use the roAssetFetcher roAssetFetcher.
method to customize how often progress events are generated. SetFileProgressIntervalSeconds()

ifAssetFetcherProgressEvent

GetFileName() As String

Returns the name of the file associated with the event. The file name is retrieved from the sync spec associated with the that roAssetFetcher
generated the event.

GetFileIndex() As Integer

Returns the zero-based index from the sync spec of the file associated with the event.

GetFileCount() As Integer

Returns the total number of files within the sync spec.

GetCurrentFileTransferredMegabytes() As Integer

Returns the number of transferred megabytes belonging to the file associated with the event.

GetCurrentFileSizeMegabytes() As Integer

Returns the size of the file associated with the event.

GetCurrentFilePercentage() As Float

Returns a floating-point number representing the download percentage of the file associated with the event.

ifUserData

SetUserData(user_data As Object) As Void

Sets the user data.

GetUserData() As Object

Returns the user data that has previously been set via (on either the event or source object). It will return Invalid if no data has SetUserData()
been set.

roAssetPool

ON THIS PAGE

ifAssetPool
GetFailureReason() As String

Note

The file size/percentage returned by the methods above is derived from the asset in the associated or sync size roAssetCollection
spec–not from the HTTP "Content-Length" header. Specifying an asset of zero will cause these methods to return zero.size

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ProtectAssets(name As String, collection As Object) As Boolean
UnprotectAssets(name As String) As Boolean
UnprotectAllAssets() As Boolean
ReserveMegabytes(size As Integer) As Boolean
SetMaximumPoolSizeMegabytes(maximum_size As Integer) As Boolean
GetPoolSizeInMegabytes() As Integer
Validate(sync_spec As Object, options As roAssociativeArray) As Boolean
QueryFiles(sync_spec As roAssociativeArray) As roAssociativeArray
AssetsReady(collection As Object) As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

An instance represents a pool of files for synchronization. You can instruct this object to populate the pool based on a sync spec and roAssetPool
then realize it in a specified directory when required.

Object Creation: The object is created with a single parameter representing the rooted path of the pool.roAssetPool

CreateObject("roAssetPool", pool_path As String)

Example
pool = CreateObject ("roAssetPool", "SD:/pool")

ifAssetPool

GetFailureReason() As String

ProtectAssets(name As String, collection As Object) As Boolean

Requests that the files specified in the "download" section of a sync spec receive a certain amount of protection. Specified files will not be deleted
when the system software needs to reduce the size of the pool to make space.

UnprotectAssets(name As String) As Boolean

Removes the protected status placed on the specified files by the method. are reference counted at the ProtectAssets() Asset collections
system-software level. As a result, when calling , you must pass the same object that you previously passed to UnprotectAssets() ProtectA

.ssets()

UnprotectAllAssets() As Boolean

Removes the protected status placed on any files in the asset pool using the method. ProtectAssets()

ReserveMegabytes(size As Integer) As Boolean

Reserves the specified amount of storage space. This method is dynamic: The system software attempts to keep the space free even when
parallel processes are filling up the storage.

SetMaximumPoolSizeMegabytes(maximum_size As Integer) As Boolean

Specifies the maximum size of an instance in megabytes. This method is more resource-intensive than , but roAssetPool ReserveMegabytes()
it is useful when creating multiple pools on a storage device.

GetPoolSizeInMegabytes() As Integer

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Returns the current size of the asset pool (in megabytes).

Validate(sync_spec As Object, options As roAssociativeArray) As Boolean

Checks the SHA1, BESHA1, or MD5 hash value of files that are in the sync spec and are currently present in the pool. This method returns True
if all checks pass and False if one or more checks fail. Calling will return information about the corrupt file(s). Note that a GetFailureReason()
True return may not mean that all files in the sync spec are currently present in the pool. The second parameter represents a table of validation
options: The key specifies the option and the value specifies whether the option is enabled or not (as a Boolean value). Currently, the only option
is "DeleteCorrupt", which determines whether the method should automatically delete corrupt files or not.

QueryFiles(sync_spec As roAssociativeArray) As roAssociativeArray

Determines whether the specified files are present in the asset pool. This method returns an associative array with filename keys and
corresponding Boolean values.

AssetsReady(collection As Object) As Boolean

Returns if the specified files are ready in the asset pool.true

roAssetPoolFiles

ON THIS PAGE

ifAssetPoolFiles
GetFailureReason() As String
GetPoolFilePath(asset_name As String) As String
GetPoolFileInfo(asset_name As String) As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

 Object Creation: The object is created with two parameters.roAssetPoolFiles

CreateObject("roAssetPoolFiles", pool As roAssetPool, assets As Dynamic)

The argument can be either an or object. If more than one object requires use of the assets roAssetCollection roSyncSpec roAssetCollection
object, it will be more efficient to convert to by calling once and then passing that collection to all roSyncSpec roAssetCollection GetAssets()
objects requiring it.

This object works similarly to the object.roSyncPoolFiles

ifAssetPoolFiles

GetFailureReason() As String

Returns explanatory text if returns an empty string or returns Invalid.GetPoolFilePath() GetPoolFileInfo()

GetPoolFilePath(asset_name As String) As String

Looks up the specified file name in the asset collection and uses the information to determine the actual name of the file in the pool. This method
returns an empty string if the name is not found in the asset collection, or if the file is not found in the pool.

GetPoolFileInfo(asset_name As String) As Object

Looks up the specified file name in the asset collection and returns all available information, including the pool file path, as an associative array.
This method returns Invalid if the asset name is not found in the asset collection. If the file is not found in the pool, information from the asset
collection will be returned without the pool path. See the table below for a description of assets in the associative array.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Field Value Description

name String Asset name

link String Asset URL

size String

hash String Hash in algorithm ":" hash format

change_hint String Only present if set

auth_user String Only present if set

auth_password String Only present if set

auth_inherit Boolean

headers_inherit Boolean

probe String Probe data

path String Absolute path of the file in the pool (or
"invalid" if the file is not in the pool)

roAssetRealizer

ON THIS PAGE

IfUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifAssetRealizer
GetFailureReason() As String
EstimateRealizedSizeInMegabytes(spec As Object) As Integer
Realize(spec As roSyncSpec/roAssetCollection) As roAssetRealizerEvent
ValidateFiles(spec As Object, options As Object) As roAssociativeArray

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object contains functions for realizing files (i.e. extracting files from an asset pool and placing them into the standard file directory). Realizing
a complete asset pool is not recommended because the process can be slow. Instead, the script should retrieve pool file locations using the roAss

object and use them to refer to files directly. The object is still useful for realizing files that must be in the root etPoolFiles roAssetRealizer
directory to work (e.g. autorun and firmware update files).

Object Creation: The object requires two parameters upon creation: an object and a destination directory.roAssetRealizer roAssetPool

CreateObject("roAssetRealizer", pool As roAssetPool, destination_directory As String)

Example
pool = CreateObject("roAssetPool", "pool")
realizer = CreateObject ("roAssetRealizer", pool, "/")

IfUserData

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifAssetRealizer

GetFailureReason() As String

Yields additional useful information if a function return indicates an error.

EstimateRealizedSizeInMegabytes(spec As Object) As Integer

Returns the estimated amount of space that would be taken up by the specified sync spec.

Realize(spec As roSyncSpec/roAssetCollection) As roAssetRealizerEvent

Places the files into the destination directory specified in the passed or . If the pool does not contain the full set of roSyncSpec roAssetCollection
required files, then this method will immediately fail before any files are changed (this method attempts to do as much work as possible before
destructively modifying the file system). This method automatically checks the length of the file and any hashes that match the specification. If
there is a mismatch, then the affected file is deleted and realization fails. This method indicates success or failure by returning an roAssetRealizer

 object.Event

ValidateFiles(spec As Object, options As Object) As roAssociativeArray

Checks the hash of every file in the spec against the corresponding file in the destination path and returns an associative array containing each
mismatched file name mapped to the reason. The options parameter is an , which can currently support a single option:roAssociativeArray

"DeleteCorrupt": Automatically deletes any files that do not match the expected hash. By default, these files are not deleted.

roAssetRealizerEvent

ON THIS PAGE

ifAssetRealizerEvent
GetEvent() As Integer
GetName() As String
GetResponseCode() As Integer
GetFailureReason() As String
GetFileIndex() As Integer

ifUserData
SetUserData(user_data As Object) As Void
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This event object is returned by the method. It yields information about the success or failure of the realization process.roAssetRealizer.Realize()

Note

The pool and the destination must be in the same file system.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifAssetRealizerEvent

GetEvent() As Integer

Returns an integer value indicating the type of the event:

101 EVENT_REALIZE_SUCCESS The specified sync list was successfully
realized.

-102 EVENT_REALIZE_INCOMPLETE Realization could not begin because at least
one of the required files is not available in
the pool.

-103 EVENT_REALIZE_FAILED_SAFE Realization has failed. Nothing has been
written to the destination, so it is likely safe
to continue the realization process. More
information is about the failure is available
via the and GetFailureReason() GetNam

 methods.e()

-104 EVENT_REALIZE_FAILED_UNSAFE Realization has failed while running, and
changes have been made to destination
files. It may not be safe to continue the
realization process. More information about
the failure is available via the GetFailureR

 and methods.eason() GetName()

GetName() As String

Retrieves the name of the affected file if the realization process fails.

GetResponseCode() As Integer

Retrieves the response code associated with the event (if any).roUrlTransfer

GetFailureReason() As String

Returns additional information if the realization process fails.

GetFileIndex() As Integer

Retrieves the zero-based index number of the the file in the sync spec.

ifUserData

SetUserData(user_data As Object) As Void

Sets the user data.

GetUserData() As Object

Returns the user data that has previously been set via (on either the event or source object). It will return Invalid if no data has SetUserData()
been set.

roSyncSpec

ON THIS PAGE

ifSyncSpec
GetFailureReason() As String
ReadFromFile(filename As String) As Boolean
ReadFromString(spec As String) As Boolean
WriteToFile(filename As String) As Boolean
WriteToFile(filename As String, options As roAssociativeArray) As Boolean
WriteToString() As String
WriteToString(options As roAssociativeArray) As String
GetMetadata(section As String) As roAssociativeArray

LookupMetadata(section As String, field As String) As String
GetFileList(section As String) As roList
GetFile(section As String, index As Integer) As roAssociativeArray
GetName() As String
EqualTo(other As roSyncSpec) As Boolean
VerifySignature(signature as String, obfuscated_passphrase as String) As Boolean
FilterFiles(section As String, criteria As roAssociativeArray) As roSyncSpec
FilesEqualTo(spec As roSyncSpec) As Boolean
GetAssets(section As String) As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object represents a parsed sync spec. It allows you to retrieve various parts of the specification with methods.

ifSyncSpec

GetFailureReason() As String

Returns information if an method indicates failure.roSyncSpec

ReadFromFile(filename As String) As Boolean

Populates the sync spec by reading the specified file. This method returns True upon success and False upon failure.

ReadFromString(spec As String) As Boolean

Populates the sync spec by reading the passed string. This method returns True upon success and False upon failure.

WriteToFile(filename As String) As Boolean

Writes out the current sync spec to the specified file as XML. Because the XML is regenerated, it is possible this file may not be textually identical
to the specification that was read. This method returns True upon success and False upon failure.

WriteToFile(filename As String, options As roAssociativeArray) As Boolean

Writes out the current sync spec to the specified file as XML or JSON. The associative array can currently contain the parametoptions format
er, which can have a value of "xml" or "json". Because the XML/JSON is regenerated, it is possible this file may not be textually identical to the
specification that was read. This method returns True upon success and False upon failure.

WriteToString() As String

Writes out the current sync spec to a string and returns it as XML. This method returns an empty string if the write operation fails.

WriteToString(options As roAssociativeArray) As String

Writes out the current sync spec to a string and returns it as XML or JSON. The associative array can currently contain the paroptions format
ameter, which can have a value of "xml" or "json". This method returns an empty string if the write operation fails.

GetMetadata(section As String) As roAssociativeArray

Returns an object containing the information stored in the specified metadata section of the sync spec (typically "client" or roAssociativeArray
"server"). This method returns 0 if the read operation fails.

If the sync spec is formatted as XML, then all returned values will be strings. If the spec spec is formatted as JSON, the JavaScript types will be
converted as follows:

JavaScript type BrightScript type

Array roArray

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Object roAssociativeArray

String String

Boolean Boolean

Number Double

Null Invalid

LookupMetadata(section As String, field As String) As String

Provides a shortcut for looking up specified metadata items in the specified section without needing to create a temporary objeroAssociativeArray
ct. This method returns an empty string if the read operation fails.

GetFileList(section As String) As roList

Returns an object containing objects for each file in the specified section of the sync spec. This method returns Invalid if roList roAssociativeArray
the read operation fails.

GetFile(section As String, index As Integer) As roAssociativeArray

Returns an object for the file in the specified section and at the specified index. This method returns Invalid if the read roAssociativeArray
operation fails.

GetName() As String

Returns the name supplied for the sync spec in the <sync> XML element.

EqualTo(other As roSyncSpec) As Boolean

Compares the contents of the object with another object. This method compares the parsed contents of each sync spec roSyncSpec roSyncSpec
rather than the XML files themselves.

VerifySignature(signature as String, obfuscated_passphrase as String) As Boolean

De-obfuscates the passphrase and uses it to verify the signature of the sync spec. This method returns True upon success and False upon
failure.

FilterFiles(section As String, criteria As roAssociativeArray) As roSyncSpec

Returns a new object that is a copy of the existing object, except that the specified section is filtered using the specified criteria. The roSyncSpec
criteria are matched against the file metadata. Multiple criteria can be specified in the passed associative array, and all criteria must be met for a
file to be returned with the new .roSyncSpec

The following call will yield an object with a "download" section that has been filtered so that only files of the group "scripts" will roSyncSpec
remain.

filtered_spec = spec.FilterFiles("download", { group: "scripts" })

FilesEqualTo(spec As roSyncSpec) As Boolean

Compares the contents of the sync spec to another sync spec and returns if they're identical. This method compares the parsed contents of true
the sync specs, rather than the XML/JSON itself.

GetAssets(section As String) As Object

Retrieves a list of assets from the sync spec in a form that's compatible with and its associated objects.roAssetPool

Networking Objects

Firmware Version 7.0

Version 7.0

Version 6.2
Version 6.1
Previous Versions

This section describes objects related to networking, client/server applications, and feeds.

roDatagramReceiver
roDatagramSender
roDatagramSocket
roDatagramEvent
roHttpServer
roHttpEvent
roKeyStore
roMediaServer
roMediaStreamer
roMediaStreamerEvent
roMimeStream
roMimeStreamEvent
roNetworkAdvertisement
roNetworkConfiguration
roNetworkAttached
roNetworkDetached
roNetworkDiscovery
roNetworkHotplug
roNetworkStatistics
roPtp
roPtpEvent
roRssArticle
roRssParser
roRtspStream
roSnmpAgent
roSnmpEvent
roStreamByteEvent
roStreamConnectResultEvent
roStreamEndEvent
roStreamLineEvent
roSyncManager
roSyncManagerEvent
roTCPServer
roTCPConnectEvent
roUPnPActionResult
roUPnPController
roUPnPDevice
roUPnPSearchEvent
roUPnPService
roUPnPServiceEvent
roTCPStream
roUrlTransfer
roUrlEvent

roDatagramReceiver

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifIdentity
GetIdentity() As Integer

ifMessagePort
SetPort(port As roMessagePort)

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object sends instances to a message port when UDP packets are received on a specified port.roDatagramEvent

Object Creation: The object is created with a parameter, which specifies the port on which to receive UDP packets.roDatagramReceiver port

CreateObject("roDatagramReceiver ", port As Integer)

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifIdentity

GetIdentity() As Integer

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type to the attached message port.roDatagramEvent

This example script listens for UDP packets on port 21075:

receiver = CreateObject("roDatagramReceiver", 21075)
mp = CreateObject("roMessagePort")
receiver.SetPort(mp)
while true
 event = mp.WaitMessage(0)
 if type(event) = "roDatagramEvent" then
 print "Datagram: "; event
 endif
end while

roDatagramSender

ON THIS PAGE

Note

The interface has been deprecated. We recommend using the interface instead.ifIdentity ifUserData

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifDatagramSender
SetDestination(destination_address As String, destination_port As Integer) As Boolean
Send(packet As Object) As Integer

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object allows UDP packets to be sent to a specified network destination.

Object Creation: The object is created with no parameters.roDatagramSender

CreateObject("roDatagramSender")

ifDatagramSender

SetDestination(destination_address As String, destination_port As Integer) As Boolean

Specifies the destination IP address in dotted quad form along with the destination port. This function returns True if successful.

Send(packet As Object) As Integer

Sends the specified data packet as a datagram. The packet may be a string or an . This method returns 0 upon success and a roByteArray
negative error code upon failure.

This example script broadcasts a single UDP packet containing "HELLO" to anyone on the network listening on port 21075:

sender = CreateObject("roDatagramSender")
sender.SetDestination("255.255.255.255", 21075)
sender.Send("Hello")

roDatagramSocket

ON THIS PAGE

ifDatagramSocket
GetFailureReason() As String
BindToLocalPort(port As Integer) As Boolean
GetLocalPort() As Integer
SendTo(destination_address As String, destination_port As Integer, packet As Object) As Integer
JoinMulticastGroup(address as String) as Boolean

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifMessagePort
SetPort(port As roMessagePort)

ifIdentity
GetIdentity() As Integer

Firmware Version 7.0

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object both sends and receives UDP packets. Use if you need the player to communicate using protocols such as SSDP, roDatagramSocket
which only allow a server to respond to the source of a received request.

Received packets are delivered to the message port as objects.roDatagramEvent

ifDatagramSocket

GetFailureReason() As String

Returns additional information if the BindToLocalPort or Sendto methods fail.

BindToLocalPort(port As Integer) As Boolean

Binds the socket to the specified local port. Use this method to receive packets sent to a specific port. Alternatively, if you want to receive replies
to sent packets (and it doesn’t matter which local port is used), pass a port number of 0, and the player will select an unused port. This method
returns True upon success and False upon failure

GetLocalPort() As Integer

Returns the local port to which the socket is bound. Use this method if you passed a port number of 0 to BindToLocalPort and need to determine
which port the player has selected.

SendTo(destination_address As String, destination_port As Integer, packet As Object) As Integer

Sends a single UDP packet, which can be an or , to the specified address and port. This method returns 0 upon success and roString roByteArray
a negative error code upon failure.

JoinMulticastGroup(address as String) as Boolean

Joins the multicast group for the specified address on all interfaces that are currently up. This method returns True upon success and False upon
failure. In the event of failure, GetFailureReason() may provide additional information. To ensure that you are joined on all network interfaces, you
should register for events and call the JoinMulticastGroup() method in response to the arrival of new networks.roNetworkHotplug

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via SetUserData(). It will return Invalid if no data has been set.

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type to the attached message port. roDatagramEvent

ifIdentity

GetIdentity() As Integer

roDatagramEvent

ON THIS PAGE

Note

The interface has been deprecated. We recommend using the interface instead.ifIdentity ifUserData

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifDatagramEvent
GetByteArray() as Object
GetSourceHost() as String
GetSourcePort() as Integer

ifString
GetString() As String

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifSourceIdentity
GetSourceIdentity() As Integer

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This event object is generated when datagram packets are received by the or objects.roDatagramReceiver roDatagramSocket

ifDatagramEvent

GetByteArray() as Object

Returns the contents of the packet as an .roByteArray

GetSourceHost() as String

Returns the source IP address of the packet in dotted form.

GetSourcePort() as Integer

Returns the source port of the packet.

ifString

GetString() As String

ifUserData

SetUserData(user_data As Object)

Sets the user data.

GetUserData() As Object

Returns the user data that has previously been set via (either on the source or event object). It will return Invalid if no data has SetUserData()
been set.

ifSourceIdentity

GetSourceIdentity() As Integer

roHttpServer

ON THIS PAGE

Note

The interface has been deprecated. We recommend using the interface instead.ifSourceIdentity ifUserData

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifHttpServer
GetFailureReason() As String
AddGetFromString(parameters As roAssociativeArray) As Boolean
AddGetFromFile(parameters As roAssociativeArray) As Boolean
AddGetFromFolder(parameters As roAssociativeArray) As Boolean
AddGetFromEvent(parameters As roAssociativeArray) As Boolean
AddPostToString(parameters As roAssociativeArray) As Boolean
AddPostToFile(parameters As roAssociativeArray) As Boolean
AddPostToFormData(parameters As roAssociativeArray) As Boolean
AddMethodFromEvent(parameters As roAssociativeArray) As Boolean
AddMethodToFile(parameters As roAssociativeArray) As Boolean
AddMethodToString(parameters As roAssociativeArray) As Boolean
SetupDWSLink(title As String) As Boolean

Parameters for "Add" Handler Methods
ifMessagePort

SetPort(port As roMessagePort)

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object allows for processing of RESTful HTTP requests from remote URLs to the embedded web server of the BrightSign player. Many of
the requests are provided to the script as objects for handling.roHttpEvent

Object Creation: The object is created with an .roHttpServer roAssociativeArray

CreateObject("roHttpServer", parameters As roAssociativeArray)

Currently, the associative array can contain a single parameter:

port: The port number of the embedded web server

ifHttpServer

Each “Add” handler method described below takes an associative array as its parameter. Values in the associative array specify how the handler
behaves. See the at the end of this section for common pairs.table key:value

GetFailureReason() As String

Yields additional useful information if an method fails.roHttpServer

AddGetFromString(parameters As roAssociativeArray) As Boolean

Causes any HTTP GET requests for the specified URL path to be met directly with the contents of the "body" member of the parameter
associative array. The MIME type (and potentially the entire character set) should be specified if the request is expected to come from a web
browser. The request is handled entirely within the method; no events are sent to the message port.roHttpServer

AddGetFromFile(parameters As roAssociativeArray) As Boolean

Causes any HTTP GET requests for the specified URL path to be met directly from the specified file. You should always specify the MIME type
(and possibly the character set) if you expect the request to come from a web browser. The request is handled entirely within the roHttpServer
method; no events are sent to the message port.

AddGetFromFolder(parameters As roAssociativeArray) As Boolean

Constructs a dynamic handler that serves up static files, which will appear as children of the defined storage folder. This method accepts an
associative array with the following parameters:

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

folder: The file path of the folder that will act as the root directory of the server. If this parameter is absent, everything on the storage
device will be served.
url_prefix: The URL prefix under which files will be served. If this parameter is absent, the URL will match from root.

filters: An array of filters. Each filter is an associative array with the following parameters:

re: The regular expression to match against the request URL.

ext: The extension to match against the leaf file of the request URL.

headers: An associative array containing arbitrary headers to be included with the automatic response.

content_type: The contents of the "Content-Type" header included with the automatic response. This cannot be set in the

same filter as the headers. The MIME type and character set can be specified together (e.g. "text/plain;

charset=utf-8").

AddGetFromEvent(parameters As roAssociativeArray) As Boolean

Requests that an event of type be sent to the configured message port. This occurs when an HTTP GET request is made for the roHttpEvent
specified URL path.

AddPostToString(parameters As roAssociativeArray) As Boolean

Requests that an event of type be sent to the configured message port. This occurs when an HTTP POST request is made for the roHttpEvent
specified URL path. Use the method to retrieve the posted body.roHttpEvent.GetRequestBodyString()

AddPostToFile(parameters As roAssociativeArray) As Boolean

Requests that, when an HTTP POST request is made to the specified URL path, the request body be stored in a temporary file according to the p
 value in the associative array. When this request is complete, an event is sent to the arameters["destination_directory"] roHttpEvent

configured message port. Use the method to retrieve the name of the temporary file. If the file still exists at the roHttpEvent.GetRequestBodyFile()
time the response is sent, it will be automatically deleted. However, if the player reboots or loses power during the POST process, the file will not
be deleted. For this reason, we recommend using a dedicated subdirectory as the and wiping this subdirectory "destination_directory"
during startup (using) before adding handlers that refer to it.DeleteDirecotry()

AddPostToFormData(parameters As roAssociativeArray) As Boolean

Requests that, when an HTTP POST request is made to the specified URL path, an attempt be made to store form data (passed as applicatio
) in an associative array that can be retrieved by calling the n/x-www-form-urlencoded or multipart/form-data roHttpEvent.

 method.GetFormData()

AddMethodFromEvent(parameters As roAssociativeArray) As Boolean

Requests that an event of type be sent to the configured message port. Unlike , this method can support roHttpEvent AddGetFromEvent()
arbitrary HTTP methods. The HTTP method is specified using the method member in the associative array.

AddMethodToFile(parameters As roAssociativeArray) As Boolean

Requests that, when an arbitrary HTTP request is made to the specified URL path, the request body be stored in a temporary file according to the
 value in the associative array. The HTTP method is specified using the member in the parameters["destination_directory"] method

associative array. When the request is complete, an event is sent to the configured message port. Use the roHttpEvent roHttpEvent.
 method to retrieve the name of the temporary file. If the file still exists at the time the response is sent, it will be GetRequestBodyFile()

automatically deleted.

AddMethodToString(parameters As roAssociativeArray) As Boolean

Attempts to support an arbitrary HTTP method. The request body is placed in a string and an event is raised. This makes the request body
available via the method. A response can be sent in the same manner as the method.roHttpEvent.GetRequestBodyString() AddGetToEvent()

SetupDWSLink(title As String) As Boolean

Generates a tab in the (DWS) that links directly to the base <ip_address:port> of the instance. The passed Diagnostic Web Server roHttpServer
string specifies the title of the tab.

Example

If the "re" and "ext" parameters are absent, the filter will match everything.

https://docs.brightsign.biz/display/DOC/Diagnostic+Web+Server

server1.SetupDWSLink("My AWS Link")
server2.SetupDWSLink("My Other AWS Link")

Parameters for "Add" Handler Methods

The following table describes common key:value pairs for "Add" handler methods:

Name Applies to Value

url_path All The path for which the handler method will
be used

user_data GetFromEvent()
PostToString()
PostToFile()
MethodToString()

A user-defined value that can be retrieved
by calling roHttpEvent.GetUserData()

method AddMethodFromEvent()
AddMethodToFile()

The HTTP method associated with the
generated . The method type roHttpEvent
can then be retrieved using roHttpEvent.

.GetMethod()

passwords All An associative array that contains a
mapping between usernames and
passwords

auth All The authentication type to use when
passwords are set. This value can be either
"basic" or "digest". The value defaults to
“digest” if not specified.

realm All The authentication realm, which will be
displayed by web browsers when prompting
for a username and password

headers GetFromFile() An associative array that contains arbitrary
headers to be included with the automated
response

content_type GetFromFile() The contents of the "Content-Type" header
that is included with the automated
response. This may not be set at the same
time as the headers member. You can set
both the MIME type and character set
together (e.g. "text/plain; charset=utf-8")

body GetFromString() The response body

filename GetFromFile() The path to the file used for the response
body.

destination_directory PostToFile() The path to the directory used for the
temporary file containing the request body.
A random filename will be generated
automatically.

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type to the attached message port.roHttpEvent

roHttpEvent

ON THIS PAGE

ifHttpEvent
GetFailureReason() As String
GetMethod() As String

SetResponseBodyString(body As String)
SetResponseBodyFile(filename As String) As Boolean
GetRequestBodyString() As String
GetRequestBodyFile() As String
GetRequestHeader(header_name As String) As String
GetRequestHeaders() As Object
GetRequestParam(URI_parameter As String) As String
GetRequestParams() As Object
AddResponseHeader(header As String, value As String) As Boolean
AddResponseHeaders(a As Object) As Boolean
SendResponse(http_status_code As Integer) As Boolean
GetFormData() As Object
GetUrl() As String

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This event object is used to handle requests generated by the object.roHttpServer

ifHttpEvent

GetFailureReason() As String

Yields additional useful information if a function return indicates an error.

GetMethod() As String

Returns the type of HTTP method that triggered the event on the instance.roHttpServer

SetResponseBodyString(body As String)

Sets the response body for an event generated via the AddGetFromEvent() or AddMethodToString() method on the object. This call roHttpServer
is ignored with any other event.

SetResponseBodyFile(filename As String) As Boolean

Specifies the name of a file to use as the source response body for an event generated via the AddGetFromEvent() or AddMethodToString()
method on the object. This call is ignored with any other event. This function will return False if the file cannot be opened or another roHttpServer
failure occurs.

The specified file is read gradually as it is sent to the client.

GetRequestBodyString() As String

Returns the string received if the event was generated via . An empty string is returned with any other event.roHttpServer.AddPostToString()

GetRequestBodyFile() As String

Returns the name of the temporary file created if the event is generated via .This call is ignored with any other roHttpServer.AddGetFromEvent
event.

GetRequestHeader(header_name As String) As String

Returns the value of the specified HTTP request header. If the header does not exist, an empty string is returned.

GetRequestHeaders() As Object

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Returns an containing all the HTTP request headers.roAssociativeArray

GetRequestParam(URI_parameter As String) As String

Returns the value of the specified URI parameter. If the parameter does not exist, an empty string is returned.

GetRequestParams() As Object

Returns an containing all the URI parameters.roAssociativeArray

AddResponseHeader(header As String, value As String) As Boolean

Adds the specified HTTP header and value to the response. This function returns True upon success.

AddResponseHeaders(a As Object) As Boolean

Adds the specified HTTP header/value pairs to the response. This method expects an of header names mapped to header roAssociativeArray
values, which can be of type , , or . Any other value types will cause the request to fail, though a subset of headers to might roString roInt roFloat
be set before the failure occurs. This function returns True upon success.

SendResponse(http_status_code As Integer) As Boolean

Sends the HTTP response using the specified HTTP status code. To ensure that the response is sent, this function needs to be called once the
script has finished handling the event. This function returns False upon failure.

GetFormData() As Object

Returns an containing all the form data. See the entry on for more information.roAssociativeArray roHttpServer.AddPostToFormData()

GetUrl() As String

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

roKeyStore

ON THIS PAGE

ifKeyStore
GetFailureReason() As String
AddCACertificate(certificate_file As String) As Boolean
AddClientCertificate(parameters As roAssociativeArray) As Boolean

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifMessagePort
SetPort(port As roMessagePort)

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object allows you to register client certificates with the player. These certificates can be used by objects when communicating roHtmlWidget
with websites. If there are multiple instances, they will share the same certificate database.roHtmlWidget

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Client certificates are not persistent on a BrightSign player; they must be registered with the certificate database after each reboot.

ifKeyStore

GetFailureReason() As String

Returns additional useful information if an method returns False.ifKeyStore

AddCACertificate(certificate_file As String) As Boolean

Registers the specified CA certificate with the certificate database. Client certificates can be either self-signed or signed using a 3rd-party
certificate issuer (Versign, DigiCert, etc.).

AddClientCertificate(parameters As roAssociativeArray) As Boolean

Registers a .p12 client certificate with the certificate database. This method accepts an associative array with the following parameters:

certificate_file: The file name and path of the .p12 client certificate.

passphrase: A passphrase for the .p12 client certificate.

obfuscated_passphrase: An obfuscated passphrase for the .p12 client certificate.

BrightSign players use the "nickname" of a .p12 client certificate to match it with a website. The "nickname" consists of the of the host:port
web address you wish to match: For example, to use a client certificate for you would specify a "nickname" of https://brightsign.biz, "brightsign

..biz:443"

The following example uses an openssl terminal to generate a .p12 client certificate to use with .https://brightsign.biz

openssl pkcs12 -export -clcerts -in client.crt -inkey client.key -out client.p12 -name
"brightsign.biz:443"

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifMessagePort

SetPort(port As roMessagePort)

Posts messages to the attached message port.

Example
k=createobject("rokeystore")
k.addcacertificate("ssd:/apache.crt")
aa = CreateObject("roAssociativeArray")
aa.AddReplace("certificate_file", "ssd:/client.p12")

Important

Provide the passphrase using either the "passphrase" or "obfuscated_passphrase" parameter (not both). We recommend using the
"obfuscated_passphrase" in production environments, while the "passphrase" should be used for testing purposes only. Contact suppor

 to learn more about generating a key for obfuscation and storing it on the player.t@brightsign.biz

mailto:support@brightsign.biz
mailto:support@brightsign.biz

aa.AddReplace("passphrase", "1q2w3e4r")
k.addclientcertificate(aa)

roMediaServer

ON THIS PAGE

ifMediaServer
GetFailureReason() As String
Start(a As String) As Boolean
Stop() As Boolean
Terminate() As Boolean

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifMessagePort
SetPort(port As roMessagePort)

ifIdentity
GetIdentity() As Integer

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

The object waits for client requests, deals with negotiation, and ultimately generates an pipeline to fulfill the roMediaServer roMediaStreamer
request. For more information, see the section. This object currently supports RTSP and HTTP requests. Requests from BrightSign Media Server
the client must take the following form:

protocol://IP_address:port/media_streamer_pipeline

protocol: Either rtsp or http

IP_address:port: The IP address of the BrightSign player and the port number on which the media server is running.

media_streamer_pipeline: A media streamer pipeline, but without the final destination component (as the destination is implicit in
the request from the client).

Object Creation: The object is created with no parametersroMediaServer

CreateObject("roMediaServer")

ifMediaServer

GetFailureReason() As String

Returns useful information if the Start(), Stop(), or Terminate() methods return False.

Start(a As String) As Boolean

Begins a media server instance. This method can be passed a string that specifies the streaming protocol and the port number of the server:

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/display/DOC/BrightSign+Media+Server

s = CreateObject("roMediaServer")
s.Start("http:port=8080")

A number of optional parameters can be added after the port parameter using an "&" (ampersand):

trace: Displays a trace of messages in the negotiation with the client. This parameter is useful particularly for debugging RTSP
sessions. For example: "rtsp:port=554&trace"

maxbitrate: Sets the maximum instantaneous bitrate (in Kbps) of the RTP transfer initiated by RTSP. This parameter has no effect for
HTTP. The parameter value 80000 (i.e. 80Mbps) has been found to work well. The default behavior (also achieved by passing a zero
value) is to not limit the bitrate at all. For example: "rtsp:port=554&trace&maxbitrate=80000"

threads: Sets the maximum number of threads the server is prepared to have running. Each thread handles a single client request. The
default value is "5". For example: "http:port=8080&threads=10"

Stop() As Boolean

Stops the media server. This method signals all threads to stop, but does not wait for this to happen before destroying the server instance.

Terminate() As Boolean

Stops the media server. This method waits for all threads to stop before destroying the server instance.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifMessagePort

SetPort(port As roMessagePort)

Posts messages to the attached message port.

ifIdentity

GetIdentity() As Integer

roMediaStreamer

ON THIS PAGE

ifMediaStreamer
GetFailureReason() As String
SetPipeline(pipeline As String) As Boolean
Initialize() As Boolean
Connect() As Boolean
Start() As Boolean
Stop() As Boolean
Disconnect() As Boolean
Reset() As Boolean
Inject(a As Integer) As Boolean

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Note

The interface has been deprecated. We recommend using the interface instead.ifIdentity ifUserData

ifMessagePort
SetPort(port As roMessagePort)

Source Specifications

The current implementation of this object allows a player to stream files over UDP and RTP. For more information, see the .ts BrightSign Media
 section.Server

Object Creation: The object is created with no parameters.roMediaStreamer

CreateObject("roMediaStreamer")

ifMediaStreamer

GetFailureReason() As String

SetPipeline(pipeline As String) As Boolean

Specifies a streaming pipeline. The source (a file URI) and destination (an IP address) of the stream are specified in the passed stream. This
method replaces the SetSource() and SetDestination() methods from firmware version 4.7. To stream media as before, use the filesimple source
designation and the udpsimple/rtpsimple destination designations:

Example
m = CreateObject("roMediaStreamer")
m.SetPipeline("filesimple:///data/clip.ts, udpsimple://239.192.0.0:1234/")
m.Start()

Initialize() As Boolean

Progresses the pipeline into the INITIALIZED state. This allocates some resources for the pipeline, but does not begin a stream.

Connect() As Boolean

Progresses the pipeline into the CONNECTED state. This allows the script to create a memory stream without starting it.

Start() As Boolean

Begins streaming.

Stop() As Boolean

Stops the pipeline stream. Some internal pipeline stages may continue running.

Disconnect() As Boolean

Regresses the steam back to the CONNECTED state.

Reset() As Boolean

Resets the pipeline stream. All internal pipeline stages are terminated.

Inject(a As Integer) As Boolean

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

https://docs.brightsign.biz/display/DOC/BrightSign+Media+Server
https://docs.brightsign.biz/display/DOC/BrightSign+Media+Server

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type to the attached message port.roMediaStreamerEvent

Source Specifications

The string passed to the method can have unique parameters that determine the source type and playback roMediaStreamer.SetPepline()
behavior.

Looping: By default, a stream from a media file will not loop when it ends. You can specify a looping parameter at the end of the source
string as follows: """filesimple:///data/example.mp4?loop". It is also possible to loop the stream using end-of-stream messages from roMe

. However, the slightly longer restart gap that results from using BrightScript may cause problems with the streaming diaStreamerEvent
client. This is especially true if you attempt to set a new media file source upon looping the function.

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

roMediaStreamerEvent

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifMediaStreamerEvent
GetEvent() As Integer

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is sent by instances of It provides information about the current state of an IP stream being sent by the player. roMediaStreamer.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifMediaStreamerEvent

GetEvent() As Integer

Returns an integer describing the status of an instance:roMediaStreamer

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

0 – EOS_NORMAL: The end of the stream has been reached without any errors being detected. This signal is not sent if the loop
parameter is specified using the r method.oMediaStreamer.SetSource()
1 – EOS_ERROR: The stream has been aborted prematurely because of an error condition.

roMimeStream

ON THIS PAGE

ifPictureStream
GetUrl() As String

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifMessagePort
SetPort(port As roMessagePort)

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object passes an MJPEG stream in MIME format to the method. There are some limitations to what MJPEG roVideoPlayer.PlayFile()
streams this object will play correctly. has been optimized to play streaming video from a local source with the smallest possible roMimeStream
delay. The result is a short buffering window that is not appropriate for playing MJPEG streams from URLs outside of a local network. We are
currently optimizing to work with different IP camera brands: see the for more details. roMimeStream IP Camera FAQ

Object Creation: To play an RTSP stream, first instantiate an object. Then wrap it in an object and pass the roUrlTransfer roMimeStream Pictur
 to , as shown in the following example.eStream PlayFile

u=createobject("roUrlTransfer")
u.seturl("http://mycamera/video.mjpg")
r=createobject("roMimeStream", u)
p=createobject("roVideoPlayer")
p.PlayFile({ PictureStream: r })

ifPictureStream

GetUrl() As String

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return if no data has been set.SetUserData() Invalid

ifMessagePort

SetPort(port As roMessagePort)

Posts event messages to the attached message port. The event messages are of the type . There are currently two possible roMimeStreamEvent
event messages:

PICTURE_STREAM_FIRST_PICTURE_AVAILABLE = 0: The first picture is now available for decoding.
PICTURE_STREAM_CONNECT_FAILED: The object is unable to connect to the specified URL.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
http://support.brightsign.biz/entries/21693211-does-the-brightsign-support-streaming-from-ip-camera

roMimeStreamEvent

ON THIS PAGE

ifInt
GetInt() As Integer
SetInt(value As Integer) As Void

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is generated by the object. It will return an integer corresponding to the event on the object:roMimeStream roMimeStream

ifInt

GetInt() As Integer

Returns the event ID.

SetInt(value As Integer) As Void

Sets the value of the event.

roNetworkAdvertisement

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is used to advertise services running on a BrightSign player to other devices on the network. The current implementation supports
advertising via mDNS (which is part of via ™).zeroconf Bonjour

Object creation: The object is created with an associative array of network parameters and arbitrary text information.roNetworkAdvertisement

CreateObject("roNetworkAdvertisement", advertisement As roAssociativeArray) As Object

The can contain the following keys:roAssociativeArray

name: The service name. This should be a readable string such as "Remote BrightSign Widget Service."

type: The service type. This should be a service from the definitive list, formatted in the following manner: "_service._protocol" (for
example, "_http._tcp").
port: The port number on which the service runs.

Tip

To discover a player advertising on the local network, use the object. roNetworkDiscovery

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
http://en.wikipedia.org/wiki/Zero_configuration_networking
http://www.apple.com/support/bonjour/

_<name>: An arbitrary text key. The value can be used to provide additional, optional data to clients (serial number, IP address, etc.).
The key must be preceded by an underscore to avoid name conflicts within the associative array; the underscore will be removed before
the record is registered with mDNS.

Once the object is created, advertising starts immediately and continues until the object is destroyed (i.e. when it becomes unreferenced).

There are no interfaces on the object.roNetworkAdvertisement

Example
mp = CreateObject("roMessagePort")
di = CreateObject("roDeviceInfo")
props = { name: "My Hoopy Service", type: "_http._tcp", port: 8080, _serial: di.
GetDeviceUniqueId() }
advert = CreateObject("roNetworkAdvertisement", props)

wait(600000, mp)
advert = invalid ' Stop advertising

roNetworkConfiguration

ON THIS PAGE

ifNetworkConfiguration
Apply() As Boolean
SetupDWS(settings As roAssociativeArray) As Boolean
EnableLEDs(enable As Boolean) As Boolean
SetClientIdentifier(a As String) As Boolean
GetClientIdentifier() As String
SetLoginPassword(password As String) As Boolean
SetObfuscatedLoginPassword(password As String) As Boolean
SetInboundShaperRate(rate As Integer) As Boolean
SetMTU(mtu As Integer) As Boolean
SetRoutingMetric(a As Integer) As Boolean
SetDHCP() As Boolean (interface)
SetIP4Address(ip As String) As Boolean (interface)
SetIP4Netmask(netmask As String) As Boolean (interface)
SetIP4Broadcast(broadcast As String) As Boolean (interface)
SetIP4Gateway(gateway As String) As Boolean (interface)
SetVlanIds(vlan_ids As roArray) As Boolean
SetWiFiESSID(essid as String) As Boolean
GetWiFiESSID() As String
SetWiFiPassphrase(passphrase as String) As Boolean
SetWiFiPassphraseAndObfuscate(a As String) As String
SetObfuscatedWiFiPassphrase(password As String) As Boolean
SetWiFiAccessPointMode(enable as Boolean) As Boolean
SetAccessPointFrequencyMHz(frequency As Integer) As Boolean
SetWiFiIdentity(identity As String) As Boolean
SetWiFiEapTlsOptions(options As String) As Boolean
SetWiFiCACertificates(certificates As Dynamic) As Boolean
SetWiFiClientCertificate(certificate As Dynamic) As Boolean
SetWiFiPrivateKey(key As Dynamic) As Boolean
SetWiFiSecurityMode(mode As String) As Boolean
ConfigureDHCPServer(config As roAssociativeArray) As Boolean
SetDomain(domain As String) As Boolean (host)
SetDNSServers(servers As roArray) As Boolean (host)
AddDNSServer(server As String) As Boolean (host)
SetTimeServer(time_server As String) As Boolean (host)
GetTimeServer() As String
SetTimeServerIntervalSeconds(interval_in_seconds As Integer) As Boolean
GetTimeServerIntervalSeconds() As Integer

SetHostName(name as String) As Boolean (host)
GetHostName() As String (host)
SetProxy(proxy as String) As Boolean (host)
GetProxy() As String (host)
SetProxyBypass(hostnames As Array) As Boolean
GetProxyBypass() As roArray
GetRecoveryUrl() As String
ResetInterfaceSettings() As Boolean
ResetHostSettings() As Boolean
GetFailureReason() As String
GetCurrentConfig() As Object
TestInterface() As Object
TestInternetConnectivity() As Object
GetNeighborInformation() As roAssociativeArray

ifWiFiConfiguration
ScanWiFi() As roArray

Network Authentication
EAP-TLS
PEAP/MSCHAP
Common Variants

Additional Certificates
Obfuscated WiFi Passphrase
TKIP/CCMP Encryption

Special Cases
MD5 Support
Anonymous Identity
Validity Dates

Examples

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object provides various methods for configuring the network interfaces on a BrightSign player.

Object Creation: The object is created with a single parameter.roNetworkConfiguration

CreateObject("roNetworkConfiguration", network_interface as Integer)

The parameter can be any of the following: network_interface

0 or : The Ethernet port on the BrightSign player"eth0"

1 or : The internal WiFi"wlan0"

2 or : A connected modem"ppp0"

The network interface can be configured as a VLAN using the following string format: . Once the VLAN "[parent_interface].[vlan_id]"
interface(s) are configured, they must be enabled on the parent network interface (e.g. "eth0") using the method. VLAN SetVlanIds()
interfaces use DHCP by default. They are supported on Series 3 players (XTx43, XDx33, HDx23, LS423, HO523) only.

Example
 n6 = CreateObject("roNetworkConfiguration", "eth0.6")

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Some of the settings below are specific to the network interface, while others are used by the BrightSign host for all network interfaces.

ifNetworkConfiguration

Apply() As Boolean

Applies the requested changes to the network interface. This method returns if the changes could not be applied to the network interface, false
though changes made using "Set" and "Reset" methods will be preserved through future reboots even if fails. Configuration may take Apply()
several seconds to complete.

SetupDWS(settings As roAssociativeArray) As Boolean

Configures the Diagnostic Web Server (DWS). This method returns if a restart is required for the changes to take effect. It will return true false
if a restart is not required or if the method failed–the method returns a non-empty string in event of failure.GetFailureReasion()

By default, the Diagnostic Web Server is enabled on port 80, with the player serial number as password. Settings for the DWS are specified in an
associative array. These properties are written to the registry and persist after reboot:

port: The port number of the Diagnostic Web Server, located at the IP address of the player. Setting this value to 0 will disable the
DWS, while setting it to "default" will make the DWS accessible on the default port (80). Specifying this parameter in the associative only
array is equivalent to enabling the DWS without password protection.
password: An obfuscated password for the DWS. This method uses digest access authentication. Specifying this parameter without
setting a number will make the DWS accessible on the default port.port

open: An unobfuscated password for the DWS. This method uses digest access authentication. Specifying this parameter without setting
a number will make the DWS accessible on the default port.port

basic: A flag indicating whether basic authentication should be used or not. Setting this parameter to allows the password set with true
the parameter to be validated using basic authentication, rather than digest access authentication. This option allows for open
backwards compatibility with older platforms; most, if not all, modern browsers require basic authentication to be disabled in order to
communicate with the DWS.

The user name is "admin" for all authentication configurations.

EnableLEDs(enable As Boolean) As Boolean

Enables or disables the Ethernet activity LED (i.e. flashing during link and activity behavior). The Ethernet LED is enabled by default. Changes to
this setting do not persist across reboots. This method returns upon success and upon failure. Note that this method is not available true false
on HDx10, HDx20, and LSx22 models.

SetClientIdentifier(a As String) As Boolean

Sets the DHCP client identifier.

GetClientIdentifier() As String

Returns the DHCP client identifier.

SetLoginPassword(password As String) As Boolean

Specifies a login password for the SSH connection (if SSH has been enabled in the registry). This method accepts a plain-text password.

SetObfuscatedLoginPassword(password As String) As Boolean

Specifies a login password for the SSH connection (if SSH has been enabled in the registry). This method accepts a password that has been
obfuscated using a shared secret.

SetInboundShaperRate(rate As Integer) As Boolean

Note

"Set" and "Reset" methods do not take effect until is called.Apply()

Note

Contact support@brightsign.biz to learn more about generating a key for obfuscation and storing it on the player.

mailto:support@brightsign.biz

Sets the bandwidth limit for inbound traffic in bits per second. For the default bandwidth limit, pass -1 to the method; for no bandwidth limit, pass 0
(though these two settings are functionally the same). You will need to call for this setting to take effect, and changing this setting at Apply()

any time will cause the network interface to be taken down and reinitialized.

SetMTU(mtu As Integer) As Boolean

Sets the maximum transmission unit (MTU) for the network interface in bytes. Currently, the MTU setting is not returned when the GetCurrentC
 method is called.onfig()

SetRoutingMetric(a As Integer) As Boolean

Configures the metric for the default gateway on the current network interface. Routes with lower metrics are preferred over routes with higher
metrics. This function returns upon success.true

SetDHCP() As Boolean (interface)

Enables DHCP and disables all other settings. This function returns if successful.true

SetIP4Address(ip As String) As Boolean (interface)

SetIP4Netmask(netmask As String) As Boolean (interface)

SetIP4Broadcast(broadcast As String) As Boolean (interface)

SetIP4Gateway(gateway As String) As Boolean (interface)

Sets the IPv4 interface configuration. All values must be specified explicitly. Unlike the shell command, there is no automatic ifconfig
inference. The parameter is a string dotted decimal quad (i.e. "192.168.1.2" or similar). It returns upon success.true

Example
nc = CreateObject("roNetworkConfiguration",0)
nc.SetIP4Address("192.168.1.42")
nc.SetIP4Netmask("255.255.255.0")
nc.SetIP4Broadcast("192.168.1.255")
nc.SetIP4Gateway("192.168.1.1")

SetVlanIds(vlan_ids As roArray) As Boolean

Enables the specified VLAN IDs (and only those IDs) on the network interface (the VLAN interfaces must be configured first). This method
accepts an array of integers.

Example
' Configure the VLANs first. Use defaults for VLAN6.
n6=CreateObject("roNetworkConfiguration", "eth0.6")
print n6.ResetInterfaceSettings()
print n6.Apply()

' Use defaults for VLAN11.
n11=CreateObject("roNetworkConfiguration", "eth0.11")
print n11.ResetInterfaceSettings()
print n11.Apply()

Note

Because of overhead on the shaping algorithm, attempting to limit the bandwidth at rates greater than approximately 2Mbit/s will
reduce speeds to less than the specified rate.

' Use static IP for VLAN15.
n15=CreateObject("roNetworkConfiguration", "eth0.15")
print n15.SetIP4Address("192.168.15.100")
print n15.SetIP4Netmask("255.255.255.0")
print n15.Apply()

' Now enable VLANs 6, 11 and 15 on eth0.
n0=CreateObject("roNetworkConfiguration", "eth0")
print n0.SetVlanIds([6, 11, 15])
print n0.Apply()

SetWiFiESSID(essid as String) As Boolean

Configures the WiFi ESSID of the wireless network that the player will connect to. This method returns on success.true

GetWiFiESSID() As String

Retrieves the configured WiFi ESSID, even if the player is not currently connected to that wireless network. Use the GetCurrentConfig().
 value to retrieve the ESSID of the wireless network that the player is currently connected to.wifi_essid

SetWiFiPassphrase(passphrase as String) As Boolean

Configures the passphrase or key for the wireless network. This method accepts a plain-text passphrase. It returns if the passphrase is true
successfully set.

SetWiFiPassphraseAndObfuscate(a As String) As String

Configures the passphrase or key for the wireless network. This method accepts a plain-text passphrase and returns the obfuscated result. If the
passphrase is not set, an empty string is returned instead.

SetObfuscatedWiFiPassphrase(password As String) As Boolean

Configures the passphrase or key for the wireless network. This method accepts a passphrase that has been obfuscated using a shared secret. It
returns if the password is successfully set.true

SetWiFiAccessPointMode(enable as Boolean) As Boolean

Enables or disables WiFi access-point mode: Passing to this method instructs the player to act as a wireless access point, which uses the true
ESSID and passphrase set with the and or) methods. If a SetWiFiESSID() SetWiFiPassphrase() (SetObfuscatedWiFiPassphrase()
passphrase has been set, the wireless access point will use WPA2 authentication–otherwise, it will use no authentication. This method returns tr

 on success and on failure; use the method to return more information in case of failure.ue false GetFailureReason()

WiFi access-point mode should be used for configuration only. It offers a minimal DHCP server, but does not provide DNS servers or routing to
the Ethernet. We recommend assigning a static IP address to the wireless interface, though this is not enforced by the firmware.

SetAccessPointFrequencyMHz(frequency As Integer) As Boolean

Sets the of the wireless access point (in MHz). This method returns on success and on failure; use the frequency true false GetFailureReas
 method to return more information in case of failure.on()

Note

VLAN configuration is persistent, even when VLAN is not enabled. If you use the method to remove and then add SetVlanIds()
VLAN IDs, they will return with the previous configuration by default. You can use the method to ResetInterfaceSettings()
remove any previous configuration.

Note

Contact to learn more about generating a key for obfuscation and storing it on the player.support@brightsign.biz

Note

WiFi access-point mode is not available on Series 2 (4Kx42, XDx32, HDx22) or earlier models.

https://en.wikipedia.org/wiki/List_of_WLAN_channels
mailto:support@brightsign.biz

SetWiFiIdentity(identity As String) As Boolean

Sets the RADIUS identity. In EAP-TLS mode, the identity will be taken from the client certificate if this method is not called ("subjectAltName" will
be used if present; otherwise, the "commonName" is used). In EAP-PEAP/MSCHAP mode, this method must be called to set the identity.

SetWiFiEapTlsOptions(options As String) As Boolean

Sets EAP-specific options. Currently, this method can be used to enable or disable MD5 support ("md5=enable" or "md5=disable") and to set an
anonymous identity for EAP-PEAP/MSCHAP configurations ("anonymous_identity=anon@brightsign.biz"). Multiple parameters can be set with a
space-separated list. To clear previous settings, pass an empty string to this method.

SetWiFiCACertificates(certificates As Dynamic) As Boolean

Sets the CA certificate file for EAP-TLS (certificates can also be sent from an EAP peer). The certificate data can be specified as an oroByteArray
f Base64 data (for , , or file formats) or an (for the file format). The supported binary formats are ASN.1 DER (for .cer .pfx .p12 roString .pem
seperate certificates and keys) and PKCS#12 (for a single file that may contain both certificates and keys). The supported text format is PEM.

SetWiFiClientCertificate(certificate As Dynamic) As Boolean

Sets the client certificate for EAP-TLS. The certificate data can be specified as an of Base64 data or an .roByteArray roString

SetWiFiPrivateKey(key As Dynamic) As Boolean

Sets the private key for authentication. The certificate data can be specified as an of Base64 data or an If the private key is roByteArray roString.
password protected, use the method to set the password.SetWiFiPassphrase()

SetWiFiSecurityMode(mode As String) As Boolean

Sets the WiFi encryption method. By default, both WPA (TKIP) and WPA2 (CCMP) encryption are permitted. This method accepts a space-
separated, case-insensitive list that can include either "tkip" or "ccmp" values. Passing an empty string sets the default mode. If both CCMP and
TKIP are allowed, CCMP always has priority.

ConfigureDHCPServer(config As roAssociativeArray) As Boolean

Configures a DHCP server on the Ethernet port or wireless access point. The associative array should consist of two properties: , ip4_start
which specifies the beginning of the range of offered IP addresses, and , which specifies the end of the range. To disable the DHCP ip4_end
server, pass an empty associative array () to this method. This method returns on success and on failure; use the {} true false GetFailureR

 method to return information in case of failure.eason()

SetDomain(domain As String) As Boolean (host)

Sets the device domain name. This will be appended to names to fully qualify them, though it is not necessary to call this. This method returns tr
 on success.ue

Example
nc.SetDomain("brightsign.biz")

SetDNSServers(servers As roArray) As Boolean (host)

Sets the list of DNS servers if there were no DNS servers when the object was created. This method accepts an array of strings, each containing
the dotted-quad IP address of a DNS server, and it returns on success. There is currently a maximum of three servers; the method will true
return if you attempt to add more than three servers.false

Note

The following methods are used to configure WPA Enterprise with EAP-TLS. SetWifi*

Note

 If the client certificate and associated private key are in the same PKCS#12 file, the file contents should be specified using the SetWiF
 method and the value should be left empty.iPrivateKey() SetWiFiClientCertificate()

AddDNSServer(server As String) As Boolean (host)

Adds another DNS server to the list if there were no DNS servers when the object was created. This method accepts the dotted-quad IP address
of a DNS server as a string, and it returns on success. There is currently a maximum of three servers; the method will return if you true false
attempt to add more than three servers.

SetTimeServer(time_server As String) As Boolean (host)

Sets the default time server, which is "time.brightsignnetwork.com". You can disable the use of NTP by calling . You can SetTimeServer("")
use URL syntax to specify that the player use an HTTP or HTTPS server to synchronize the clock. The following are valid time server addresses:

http://time.brightsignnetwork.com/
https://time.brightsignnetwork.com/
ntp://time.brightsignnetwork.com/
time.brightsignnetwork.com

GetTimeServer() As String

Retrieves the (host) time server currently in use.

SetTimeServerIntervalSeconds(interval_in_seconds As Integer) As Boolean

Specifies how often the player should communicate with the time server and adjust its clock. The default interval is 12 hours; passing a value of 0
specifies the default interval. The minimum interval allowed is 120 seconds.

GetTimeServerIntervalSeconds() As Integer

Returns the current interval for time-server renewal (in seconds).

SetHostName(name as String) As Boolean (host)

Sets the device host name. If no host name has been explicitly set, then a host name is automatically generated based on the device serial
number. Passing an empty string to this method resets the device host name to its automatically generated value.

GetHostName() As String (host)

Retrieves the host name currently in use.

SetProxy(proxy as String) As Boolean (host)

Sets the name or address of the proxy server used for HTTP and FTP requests. The proxy string should be formatted as "http://user:
password@hostname:port". The hostname can contain up to four "*" characters; each "*" character can be used to replace one octet from the
current IP address. For example, if the IP address is currently 192.168.1.2, and the proxy is set to "proxy-*-*", then the player will attempt to use a
proxy named "proxy-192.168".

GetProxy() As String (host)

Returns the name or address of the proxy server.

SetProxyBypass(hostnames As Array) As Boolean

Exempts the specified hosts from the proxy setting. The passed array should consist of one or more hostnames. The player will attempt to reach
the specified hosts directly rather than using the proxy that has been specified with the method. For example, the hostname SetProxy()
"example.com" would exempt "example.com", "example.com:80", and "www.example.com" from the proxy setting.

GetProxyBypass() As roArray

Returns an array of hostnames that have been exempted from the proxy setting using the method.SetProxyBypass()

Tip

To clear the list of DNS servers, call .SetDNSServers([])

Note

The last two addresses are equivalent.

GetRecoveryUrl() As String

Returns the current recovery URL, which is stored in the "ru" entry of the "networking" . If the recovery URL is set via DHCP registry section
Option 43, it will take precedence over the "ru" registry entry.

ResetInterfaceSettings() As Boolean

Clears all interface-specific settings (e.g. IP address, default gateway). This method is ideal for resetting an interface to a known, empty state
before configuring specific settings.

ResetHostSettings() As Boolean

Clears all host settings (i.e. settings that don't take the interface number into account and that don't affect the specified network interface; e.g. the
time server).

GetFailureReason() As String

Returns additional information when a member function returns .false

GetCurrentConfig() As Object

Retrieves the entire current configuration as an associative array containing the following members:

Value Type Host/Interface Description

metric Integer Interface Returns the current routing metric
for the interface. See the SetRouti

 entry for more details.ngMetric()

dhcp Boolean Interface Returns if the system is true
currently configured to use DHCP.
Returns otherwise.false

hostname String Host The currently configured host name

mdns_hostname String Host The Zeroconf host name currently in
use. This may be longer than the
host name if there is a collision on
the current network.

ethernet_mac String Interface The Ethernet MAC address

ip4_address String Interface The current IPv4 address. If none is
currently set, the string will be empty.

ip4_netmask String Interface The current IPv4 network mask. If
none is currently set, the string will
be empty.

ip4_broadcast String Interface The current IPv4 broadcast address.
If none is currently set, the string will
be empty.

ip4_gateway String Interface The current IPv4 gateway address.
If none is currently set, the string will
be empty.

domain String Host The current domain suffix

dns_servers roArray of Strings Host The currently active DNS servers

time_server String Host The current time server

configured_proxy String Host The currently configured proxy. This
may contain magic characters as
explained under SetProxy()
above.

current_proxy String Host The currently active proxy. Any
magic characters will have been
replaced as explained under SetPro

 above.xy()

shape_inbound Integer Interface The current bandwidth shaping for
inbound traffic determined by the Se

 method.tInboundShaperRate()

type String Interface Either "wired" or "wifi"

link Boolean Interface

Indicates whether the network
interface is currently connected.

wifi_essid String Interface The name of the current Wi-Fi
network (if any)

wifi_signal Integer Interface An indication of the received signal
strength. The absolute value of this
field is usually not meaningful, but it
can be compared with the reported
value on other networks or in
different locations.

TestInterface() As Object

Performs various tests on the network interface to determine whether it appears to be working correctly. It reports the results via an associative
array containing the following members:

Value Type Description

ok Boolean This value is if the tests find no true
problems, or if at least one problem false
was identified.

diagnosis String A single-line diagnosis of the first problem
identified in the network interface.

log roArray of strings A complete log of all the tests performed
and their results.

TestInternetConnectivity() As Object

Performs various tests on the Internet connection (via any available network interface, not necessarily the one specified when the roNetworkConfi
 object was created) to determine whether it appears to be working correctly. It reports the results via an associative array containing the guration

following members:

Value Type Description

ok Boolean This value is if the tests find no true
problems, or if at least one problem false
was identified.

diagnosis String A single line diagnosis of the first problem
identified with the Internet connection.

log roArray of strings A complete log of all the tests performed
and their results.

GetNeighborInformation() As roAssociativeArray

Retrieves location information from the network infrastructure using the LLDP-MED protocol. The information is returned as an associative array
of strings corresponding to civic-address types, which are defined as follows according to the LLDP-MED specification:

CAtype Label Description

1 A1 national subdivisions (state, region, province, prefecture)

2 A2 county, parish, gun(JP), district(IN)

3 A3 city, township, shi(JP)

4 A4 city division, borough, city district, ward, chou(JP)

5 A5 neighborhood, block

6 A6 street

CAtype NENA PIDF Description Examples

0 language i-default [3]

16 PRD PRD leading street direction N

17 POD POD trailing street suffix SW

18 STS STS street suffix Ave, Platz

19 HNO HNO house number 123

20 HNS HNS house number suffix A, 1/2

21 LMK LMK landmark or vanity address Columbia University

22 LOC LOC additional location information South Wing

23 NAM NAM name (residence and office occupant) Joe's Barbershop

24 ZIP PC postal/ZIP code 10027-1234

25 building (structure) Low Library

26 unit (apartment, suite) Apt 42

27 FLR floor 4

28 room number 450F

29 placetype office

30 PCN postal community name Leonia

31 post office box (P.O Box) 12345

32 additional code 13203000003

128 script Latn

255 reserved

ifWiFiConfiguration

ScanWiFi() As roArray

Scans for available wireless networks. The results are reported as an containing one or more associative arrays with the following roArray
members:

Value Type Description

essid String Network name

bssid String Access point BSSID

signal Integer Received signal strength indication. The
absolute value of this field is not usually
relevant, but it can be compared with the
reported value on other networks or in
different locations.

Network Authentication

BrightSign players support most commonly used wireless encryption formats: WEP (64 & 128), WPA (TKIP), and WPA2 (AES).

WPA Enterprise is supported using EAP-TLS (with DER, PEM, or PKCS#12 certificates) and PEAPv0/MSCHAPv2 (with a username and
passphrase). Wired authentication via 802.1x is also supported. The configuration instructions below apply to both WiFi and wired authentication
via 802.1x; the only difference is the wired/wireless parameter (0/1) passed during initialization.roNetworkConfiguration

EAP-TLS

EAP-TLS authentication requires a client certificate and private key. There are two ways to accomplish this:

Packaging the client certificate and private key in a single file in PKCS#12 format (using PEM or DER encoding), usually with a file .p12
extension. To do this, set the PKCS#12 file using the method and pass a blank string to the SetWiFiPrivateKey() SetWiFiClientC

 method.ertificate()

Packaging the client certificate as a X.509 certificate (using PEM or DER encoding) and optionally securing the key with a passphrase
(instead of the usual WiFi passphrase). To do this, set the client certificate using the method and the SetWiFiClientCertificate()
key using the method. If the key is protected with a passphrase, you should then call .SetWiFiPrivateKey() SetWiFiPassphrase()

Certificate keys may contain binary data if not PEM formatted. In this case, they must be provided as an object. Text formats may be roByteArray
passed using a string or .roByteArray

Example: Setting EAP-TLS with a .p12 file
nc = CreateObject("roNetworkConfiguration",1)

p12 = CreateObject("roByteArray")
p12.ReadFile("client.p12")

nc.SetWiFiClientCertificate("")
nc.SetWiFiPrivateKey(p12)
nc.SetWiFiPassphrase("passwordgoeshere")

During authentication, the Radius server is passed an identity. By default, the identity will be taken from the client certificate. If the certificate has
a "subjectAltName", it will be used; otherwise, the "CommonName" is used. If neither of these are correct, the identity may be overridden. This
default behavior can be overridden by calling , or it can be specified by passing a blank string to .SetWiFiIdentity() SetWiFiIdentity()

PEAP/MSCHAP

This mode requires an identity (username) and passphrase, rather than a client certificate. There may also be a second, "outer", identity–see the
Special Cases section below for configuration details.

nc = CreateObject("roNetworkConfiguration",1)
nc.SetWiFiIdentity("user@brightsign-example.com")
nc.SetWifiPassphrase("passwordgoeshere")

Common Variants

Additional Certificates

Additional CA certificates are often required (and using a custom CA for authentication is potentially more secure). Also, some CA hierarchies
require intermediate certificates, which are sometimes supplied via EAP. If the server does not supply them, they may be added to the CA file
using the method. This method supports PEM and DER certificates.SetWiFiCACertififcates()

nc = CreateObject("roNetworkConfiguration",1)
ca = CreateObject("roByteArray")
ca.ReadFile("ca.pem")
nc.SetWiFiCACertificates(ca)

Obfuscated WiFi Passphrase

If an obfuscated WiFi passphrase is required, you can substitute the method for the SetObfuscatedWiFiPassphrase() SetWiFiPassphras
 method. Contact to learn more about generating a key for obfuscation and storing it on the player.e() support@brightsign.biz

TKIP/CCMP Encryption

By default, both WPA (TKIP) and WPA2 (CCMP) encryption is permitted. You can alter this behavior using the method, SetSecurityMode()
which accepts a space-separated, case-insensitive list of allowed modes ("ccmp" and "tkip"). If both CCMP and TKIP are allowed, CCMP always
has priority.

nc = CreateObject("roNetworkConfiguration",1)
nc.SetWiFiSecurityMode("") 'Sets the default mode
nc.SetWiFiSecurityMode("ccmp tkip") 'Explicitly allows both modes (same as the default mode)
nc.SetWiFiSecurityMode("ccmp") 'Requires the use of CCMP

Special Cases

MD5 Support

mailto:support@brightsign.biz

MD5 support is enabled by default for backwards-compatibility reasons. This behavior can be modified by passing the "md5=enable" or
"md5=disable" string to the method.SetWiFiEapTlsOptions()

nc = CreateObject("roNetworkConfiguration",1)
nc.SetWiFiEapTlsOptions("md5=disable")

Anonymous Identity

Some EAP-PEAP/MSCHAP configurations require an anonymous identity. By default, the BrightSign player uses the same inner and outer
identity. An anonymous identity can be configured with the method:SetWiFiEaptTlsOptions()

nc = CreateObject("roNetworkConfiguration",1)
nc.SetWiFiEapTlsOptions("anonymous_identity=anon@brightsign.biz")

Validity Dates

Validity dates are required for both EAP-TLS and PEAP/MSCHAP. The current time is required to check the certificate. If the player clock has not
been set, it will typically set its time using the network, but this requires EAP authentication first. To avoid this problem, there are two special
exceptions:

EAP-TLS: When the clock is not set, the time is set to ten seconds after the client certificate becomes valid, which is usually sufficient to
authenticate (though this may not be sufficient for servers with newer certificates than the client).
PEAP/MSCHAP: There is no client certificate, and the server certificate time is not checked when the date is not set.

The clock can also be set via the , which prevents either of the above exceptions from being used. Typically, the clock is Diagnostic Web Server
also set from the network once it is available, so these exceptions are only used on first boot or when the clock battery has been completely
emptied.

Examples

The following script disables WPA Enterprise configuration (which is otherwise persistent):

nc = CreateObject("roNetworkConfiguration", 1)
nc.SetWiFiSecurityMode("")
nc.SetWiFiESSID("")
nc.SetWiFiIdentity("")
nc.SetWiFiCaCertificates("")
nc.SetWiFiClientCertificate("")
nc.SetWiFiPrivateKey("")
nc.SetWiFiPassphrase("")
nc.SetWiFiEapTlsOptions("")
ok = nc.Apply()

The following script configures the WiFi for EAP-TLS using a PKCS#12 () file, without additional CA certificates:.p12

essid = "brightwifi"
pkcs12file = "client.p12"
pkcspass = "passwordgoeshere"

nc = CreateObject("roNetworkConfiguration", 1)
nc.SetWiFiESSID(essid)

Tip

If neither MD5 or identity options are being used, the setting should be cleard by passing a blank string to the SetWiFiEaptTlsOptio
 method.ns()

https://docs.brightsign.biz/display/DOC/Diagnostic+Web+Server

p12 = CreateObject("roByteArray")
ok = p12.ReadFile(pkcs12file)

if ok then
 nc.SetWiFiClientCertificate("")
 nc.SetWiFiPrivateKey(p12)
 nc.SetWiFiPassphrase(pkcspass)

 nc.SetWiFiCaCertificates("")
 nc.SetWiFiSecurityMode("")
 nc.SetWiFiIdentity("")
 nc.SetWiFiEapTlsOptions("")

 ok = nc.Apply()
end if

The following script configures the WiFi for EAP-TLS with additional certificates:

essid = "brightwifi"
cafile = "cacert.pem"
pkcs12file = "client.p12"
pkcspass = "passwordgoeshere"

nc = CreateObject("roNetworkConfiguration", 1)
nc.SetWiFiESSID(essid)

p12 = CreateObject("roByteArray")
ok = p12.ReadFile(pkcs12file)

ca = CreateObject("roByteArray")
ok = ca.ReadFile(cafile) and ok

if ok then
 nc.SetWiFiClientCertificate("")
 nc.SetWiFiPrivateKey(p12)
 nc.SetWiFiPassphrase(pkcspass)

 nc.SetWiFiCaCertificates("")
 nc.SetWiFiSecurityMode("")
 nc.SetWiFiIdentity("")
 nc.SetWiFiEapTlsOptions("")

 ok = nc.Apply()
end if

The following script configures the WiFi for PEAP/MSCHAP with additional CA files:

essid = "brightwifi"
cafile = "ca.pem"
user = "someuser@brightsign.biz"
pass = "whatever"
ca = CreateObject("roByteArray")
ok = ca.ReadFile(cafile)

if ok then
 nc = CreateObject("roNetworkConfiguration", 1)
 nc.SetWiFiESSID(essid)
 nc.SetWiFiIdentity(user)
 nc.SetWiFiPassphrase(pass)

 nc.SetWiFiCaCertificates(ca)
 nc.SetWiFiClientCertificate("")
 nc.SetWiFiPrivateKey("")
 'Use this if an anonymous outer identity is required
 'nc.SetWiFiEapTlsOptions("anonymous_identity=anon@brightsign.biz")
 nc.SetWiFiEapTlsOptions("")

 ok = nc.Apply()
 if not ok then
 fail = "Unable to set configuration: " + nc.GetFailureReason()
 end if
else
 fail = "Unable to read file " + cafile
end if

' if not ok, do something with the failure message

The following script performs various VLAN configurations on the Ethernet interface:

' Configure the VLANs first. Use defaults for VLAN6
n6=CreateObject("roNetworkConfiguration", "eth0.6")
print n6.ResetInterfaceSettings()
print n6.Apply()

' Use defaults for VLAN11
n11=CreateObject("roNetworkConfiguration", "eth0.11")
print n11.ResetInterfaceSettings()
print n11.Apply()

' Use static IP for VLAN15
n15=CreateObject("roNetworkConfiguration", "eth0.15")
print n15.SetIP4Address("192.168.15.100")
print n15.SetIP4Netmask("255.255.255.0")
print n15.Apply()

' Now enable VLANs 6, 11 and 15 on eth0.
n0=CreateObject("roNetworkConfiguration", "eth0")
print n0.SetVlanIds([6, 11, 15])
print n0.Apply()

roNetworkAttached

ON THIS PAGE

ifInt
GetInt() As Integer
SetInt(value As Integer) As Void

ifString
GetString() As String
SetString(value As String) As Void

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0

Version 6.2
Version 6.1
Previous Versions

This object implements the and interfaces to report the index of an attached . Instances of this object are posted by ifInt ifString network interface r
when a configured network connection becomes available. For Ethernet, it may take some time after the cable is inserted for oNetworkHotplug

this to take place.

ifInt

GetInt() As Integer

Returns the interface ID of the event. This method returns -1 VLAN interfaces; use to retrieve the interface name.GetString()

SetInt(value As Integer) As Void

Sets the value that will be returned by . GetInt()

ifString

GetString() As String

Returns the interface name ("eth0", "wlan0", "ppp0") of the instance associated with the event. roNetworkConfiguration

SetString(value As String) As Void

Sets the value that will be returned by . GetString()

ifUserData

SetUserData(user_data As Object)

Sets the user data.

GetUserData() As Object

Returns the user data that has previously been set via (either on the source or event object). This method will return Invalid if SetUserData()
no data has been set.

roNetworkDetached

ON THIS PAGE

ifInt
GetInt() As Integer
SetInt(value As Integer) As Void

ifString
GetString() As String
SetString(value As String) As Void

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object implements the interface to report the index of a detached . Instances of this object are posted by ifInt network interface roNetworkHotp
when a configured network connection becomes unavailable. lug

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/display/DOC/roNetworkConfiguration#roNetworkConfiguration-network_interface
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/display/DOC/roNetworkConfiguration#roNetworkConfiguration-network_interface

ifInt

GetInt() As Integer

Returns the interface ID of the event. This method returns -1 VLAN interfaces; use to retrieve the interface name.GetString()

SetInt(value As Integer) As Void

Sets the value that will be returned by . GetInt()

ifString

GetString() As String

Returns the interface name ("eth0", "wlan0", "ppp0") of the instance associated with the event. roNetworkConfiguration

SetString(value As String) As Void

Sets the value that will be returned by . GetString()

ifUserData

SetUserData(user_data As Object)

Sets the user data.

GetUserData() As Object

Returns the user data that has previously been set via (either on the source or event object). This method will return Invalid if SetUserData()
no data has been set.

roNetworkDiscovery

ON THIS PAGE

ifNetworkDiscovery
Search(parameters As roAssociativeArray) As Boolean

ifMessagePort
SetPort(port As roMessagePort)

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Event Types

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object allows for zeroconf discovery of devices on the local network (including other BrightSign players) using mDNS. Other BrightSign
players must be running an instance of to be discovered using the object. roNetworkAdvertisement roNetworkDiscovery

Object Creation: The object is created with no parameters.roNetworkDiscovery

CreateObject("roNetworkDiscovery")

ifNetworkDiscovery

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Search(parameters As roAssociativeArray) As Boolean

Searches for BrightSign players on the local network. A player will only respond to the search if it is currently running an instance of roNetworkAdv
. Search results will be posted to the attached message port. Search parameters are passed to this method as an associative array ertisement

containing the following values:

type: The service type. If this entry is omitted, the search will default to "_http._tcp".

protocol: The IP protocol. Acceptable values are "IPv4" and "IPv6". You can also omit this entry if you wish to search for players using
either protocol.

ifMessagePort

SetPort(port As roMessagePort)

Posts events to the attached message port. See the Event Types section below for more details.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via SetUserData(). It will return Invalid if no data has been set.

Event Types

The object can post three event object types to the attached message port:roNetworkDiscovery

roNetworkDiscoveryResolvedEvent: Raised when a host is fully resolved.
roNetworkDiscoveryCompletedEvent: Raised when the search is complete.
roNetworkDiscoveryGeneralEvent: Raised for events other than the above two. This event rarely occurs.

All three event objects offer the , , and methods. Use to retrieve an associative array SetUserData() GetUserData() GetData() GetData()
of results. For the object, calling will return the following entries:roNetworkDiscoveryResolvedEvent GetData()

protocol: Either "IPv4" or "IPv6"

host_name: The hostname of the player

name: The service name

txt: An associative array containing arbitrary text entries specified during instantiation of the instance.roNetworkAdvertisement
domain: The domain of the player

type: The service type

address: The IPv4 or IPv6 address

The following script searches for a player running an instance and prints the results of the discovery.roNetworkAdvertisement

rn = CreateObject("roNetworkDiscovery")
mp = CreateObject("roMessagePort")
rn.SetPort(mp)
params = {}
rn.Search(params)

complete = false
while not complete
 ev = mp.WaitMessage(10000)
 if ev = invalid then
 stop
 end if

 if type(ev) = "roNetworkDiscoveryCompletedEvent" then
 print "roNetworkDiscoveryCompletedEvent"
 end if

 if type(ev) = "roNetworkDiscoveryGeneralEvent" then
 print "roNetworkDiscoveryGeneralEvent"
 end if

 if type(ev) = "roNetworkDiscoveryResolvedEvent" then
 complete = true
 data = ev.GetData()
 print "DATA:"; data
 print "DONE"
 textdata = data["txt"]
 if textdata <> invalid then
 print "TEXT: "; textdata
 endif
 end if

end while

roNetworkHotplug

ON THIS PAGE

ifMessagePort
SetPort(a As Object)

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object can be used to generate events when a becomes available or unavailable. It will post events of type network interface roNetworkAttac
and to the associated message port.hed roNetworkDetached

To determine which network was attached or detached, the script needs to call or on the /GetInt() GetString() roNetworkAttached roNetwork
 event object. These methods provide an index of the network interface that was attached or detached.Detached

ifMessagePort

SetPort(a As Object)

Posts messages of type / to the attached message port.roNetworkAttached roNetworkDetached

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Note

Reconfiguring a network interface using may cause it to detach and attach again.roNetworkConfiguration

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/display/DOC/roNetworkConfiguration#roNetworkConfiguration-network_interface

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

roNetworkStatistics

ON THIS PAGE

ifNetworkStatistics
GetTotals() As roAssociativeArray
GetIncremental() As roAssociativeArray

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object allows you to monitor and post how much bandwidth the player is using.

Object Creation: The object is created with a single parameter.roNetworkStatistics

CreateObject("roNetworkStatistics", network_interface as Integer)

The network_interface parameter is used to distinguish between the following:

0: The Ethernet port on the BrightSign player.
1: The optional internal Wi-Fi.

ifNetworkStatistics

GetTotals() As roAssociativeArray

Yields the total network figures since booting up.

GetIncremental() As roAssociativeArray

Yields the total network figures since booting up. Then, every subsequent time this method is called, it will yield the amount each figure has
changed since the previous call.

Both methods return the following statistics as floating point values:

tx_carrier_errors

tx_packets

rx_packets

tx_errors

rx_frame_errors
tx_bytes
rx_errors
tx_collisions
rx_dropped
tx_compressed
rx_multicast
tx_dropped
rx_fifo_errors
rx_bytes

Note

If multiple instances of roNetworkStatistics are created, GetIncremental() calls for each instance will track changes independently.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

tx_fifo_errors
rx_compressed

roPtp

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifMessagePort
SetPort(port As roMessagePort)

ifPtp
GetPtpStatus() As roAssociativeArray

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object can be used to retrieve information about the network PTP state of the player.

Object Creation: This object is created with no additional parameters.

ptp = CreateObject("roPtp")

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of the type to the attached message port.roPtpEvent

ifPtp

GetPtpStatus() As roAssociativeArray

Returns an associative array containing information about the network PTP state of the player:

state: A string indicating the current PTP state of the player. Values can be "MASTER", "SLAVE", or "UNCALIBRATED".

timestamp: A value indicating when the PTP state was last changed. This value is measured in seconds since the player booted. This
value can be compared against the total uptime of the player, which is retrieved by calling .UpTime(0)

roPtpEvent

ON THIS PAGE

ifUserData

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

SetUserData(user_data As Object)
GetUserData() As Object

ifPtpEvent
GetPtpStatus() As roAssociativeArray

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This event object is generated by the object whenever the PTP status of the player changes.roPtp

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifPtpEvent

GetPtpStatus() As roAssociativeArray

Returns an associative array containing information about the network PTP state of the player:

state: A string indicating the current PTP state of the player. Values can be "MASTER", "SLAVE", or "UNCALIBRATED".

timestamp: A value indicating when the PTP state was last changed. This value is measured in seconds since the player booted. This
value can be compared against the total uptime of the player, which is retrieved by calling .UpTime(0)

roRssArticle

ON THIS PAGE

ifRssArticle
GetTitle() As String
GetDescription() As String
GetTimestampInSeconds(a As Integer) As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

Objects of type are returned by the method. These instances can be passed to the objectroRssArticle roRssParser.GetNextArticle() roTextWidget
to display the feed on-screen.

ifRssArticle

GetTitle() As String

Returns the title of the RSS item.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

GetDescription() As String

Returns the content of the RSS item.

GetTimestampInSeconds(a As Integer) As Boolean

Returns in seconds the difference in publication date between this RSS item and the most recent item in the feed. The user can utilize this to
decide if an article is too old to display.

SetTitle(a As String) As Boolean

SetDescription(a As String) As Boolean

SetTimestampInSeconds(a As Integer) As Boolean

Example
u=CreateObject("roUrlTransfer")
u.SetUrl("http://www.lemonde.fr/rss/sequence/0,2-3208,1-0,0.xml")
u.GetToFile("tmp:/rss.xml")

r=CreateObject("roRssParser")
r.ParseFile("tmp:/rss.xml")

EnableZoneSupport(1)
b=CreateObject("roRectangle", 0, 668, 1024, 100)
t=CreateObject("roTextWidget", b, 3, 2, 2)
t.SetForegroundColor(&hFFD0D0D0)
t.Show()

a = r.GetNextArticle()
while type(a) = "roRssArticle"
 t.PushString(a.GetDescription())
 sleep(1000)
 a = r.GetNextArticle()
end while

while true
 sleep(1000)
end while

roRssParser

ON THIS PAGE

ifRssParser
ParseFile(filename As String) As Boolean
ParseString(filename As String) As Boolean
GetNextArticle() As Object

Firmware Version 7.0

Important

For firmware versions 4.7.x and above, if no alpha value is specified when is called, the text roTextWidget.SetForegroundColor()
widget area will appear blank.

Version 7.0
Version 6.2
Version 6.1
Previous Versions

The object is used to parse an RSS feed before displaying it. Each item in an RSS feed is represented by an object.roRssParser roRssArticle

ifRssParser

ParseFile(filename As String) As Boolean

Parses an RSS feed from a file.

ParseString(filename As String) As Boolean

Parses an RSS feed from a string.

GetNextArticle() As Object

Gets the next article parsed by the RSS parser. The articles are sorted by publication date, with the most recent article first. This returns an roRss
 object if there is one. Otherwise, an integer is returned.Article

roRtspStream

ON THIS PAGE

ifRtspStream
GetUrl() As String
AddHeader(header As String, text As String)
ClearHeaders()

ifMessagePort
SetPort(port As roMessagePort)

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This is a simple media-streaming object that is passed to the method. Use this object to play UDP, RTP, HLS, and roVideoPlayer.PlayFile()
HTTP streams. See the and FAQs for more details.Video Streaming IP Camera

Object Creation: To play a stream, instantiate an object with a URL as its argument. Then pass it to the method as roRtspStream PlayFile()
shown in the following example:

v = createobject("rovideoplayer")
r = createobject("rortspstream", "http://172.30.1.37/alldigital/1080p/playlist.m3u8")
v.playfile({rtsp:r})

ifRtspStream

Note

The key in the passed associative array will always be "rtsp", no matter which streaming protocol is used.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
http://support.brightsign.biz/entries/22262919-What-video-streaming-protocols-are-supported-by-BrightSign-players-
http://support.brightsign.biz/entries/21693211-does-the-brightsign-support-streaming-from-ip-camera

GetUrl() As String

Retrieves the currently configured URL.

AddHeader(header As String, text As String)

Adds the specified header and header text to the streaming request. The ":" after the header and the "\r\n" after the header text are supplied
automatically by the method. Headers only take effect when a stream is played; you cannot add more headers when a stream is playing (though
these headers will be applied if the stream is played again).

ClearHeaders()

Removes headers that have been added using the method.AddHeader()

ifMessagePort

SetPort(port As roMessagePort)

Posts event messages to the attached message port. The event messages are of the type and will implement the roRtspStreamEvent ifInt
interface.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

roSnmpAgent

ON THIS PAGE

ifSnmpAgent
AddOidHandler(oid_string As String, writable_flag As Boolean, initial_value As Object) As Boolean
GetOidValue(oid_string As String) As Object
SetOidValue(oid_string As String, new_value As Object) As Boolean
Start() As Boolean

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifMessagePort
SetPort(port As roMessagePort)

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

When this object is created, it starts an SNMP process that handles some standard SNMP MIBs such as system uptime. Prior to starting the SNM
P agent, you can register other OIDs for handling. You can set and retrieve these by both an SNMP client and the script.

OID values are retrieved by an SNMP client without script interaction. Setting OID values will generate an object stating that they roSnmpEvent
have been changed. The script event handler can then retrieve new values and take appropriate action.

Setting an OID value from an SNMP client doesn't block the client waiting on any script action; there is a short, but indeterminate, time delay for
scripts to act on a value change. This isn't a problem generally because of the way SNMP MIBs are designed. If you want to provide constantly
updating OID values, you can update them using either a timer or state changes.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifSnmpAgent

AddOidHandler(oid_string As String, writable_flag As Boolean, initial_value As Object) As Boolean

Adds an OID handler with the following parameters to the SNMP agent:

oid_string: The OID string (e.g. "1.3.6.1.4.1.26095.1.1.1.4.4.0"). All OID strings should be numerical.

: A Boolean value indicating whether the value can be changed by an SNMP client.writable_flag

: The initial value, which can be either an or . The OID will reflect the type chosen here.initial_value roString roInt

GetOidValue(oid_string As String) As Object

Returns the current value (as either or) for a given OID.roString roInt

SetOidValue(oid_string As String, new_value As Object) As Boolean

Changes the current value for a given OID. The passed value can be either an or .roString roInt

Start() As Boolean

Starts the SNMP agent. Call this method once all OID handlers have been registered.

Example
agent = CreateObject("roSnmpAgent")
agent.AddOidHandler("1.3.6.1.4.1.26095.1.1.1.4.4.0", false, "ValueOfOid")
agent.AddOidHandler("1.3.6.1.4.1.26095.1.1.1.4.5.0", true, 10)
agent.Start()

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type to the attached message port.roSnmpEvent

roSnmpEvent

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifString
GetString() As String
SetString(a As String)

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifString

GetString() As String

SetString(a As String)

roStreamByteEvent

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

ON THIS PAGE

ifInt
GetInt() As Integer
SetInt(value As Integer) As Void

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifInt

GetInt() As Integer

Returns the event ID.

SetInt(value As Integer) As Void

Sets the value of the event.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

roStreamConnectResultEvent

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ON THIS PAGE

ifInt
GetInt() As Integer
SetInt(value As Integer) As Void

ifUserData
SetUserData(user_data As Object) As Void
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This event is sent to a message port associated with an object when an request has been completed or has roTCPStream AsyncConnectTo()
failed.

ifInt

GetInt() As Integer

Returns the result code of the event. If the connection was successfully established, then this method will return 0. If connection failed for any
reason, this method will return a non-zero integer.

SetInt(value As Integer) As Void

Sets the value of the event.

ifUserData

SetUserData(user_data As Object) As Void

Sets the user data.

GetUserData() As Object

Returns the user data that has previously been set via (on either the event or source object). It will return Invalid if no data has SetUserData()
been set.

roStreamEndEvent

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

ON THIS PAGE

ifInt
GetInt() As Integer
SetInt(value As Integer) As Void

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifInt

GetInt() As Integer

Returns the event ID.

SetInt(value As Integer) As Void

Sets the value of the event.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

roStreamLineEvent

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifString
GetString() As String
SetString(a As String)

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifString

GetString() As String

SetString(a As String)

roSyncManager

Firmware Version 7.0

Version 7.0

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Version 6.2
Version 6.1
Previous Versions

ON THIS PAGE

ifMessagePort
SetPort(port As roMessagePort)

ifSyncManager
SetMasterMode(master_mode As Boolean) As Boolean
Synchronize(identifier As String, ms_delay As Integer) As Object

Examples

This object provides PTP synchronization capabilities for video walls and other deployments that require closely calibrated interaction among
players. handles all network traffic for master/slave synchronization, including the network clock. Multiple synchronization groups roSyncManager
are allowed on the same local network and even within the same video wall.

The object currently supports video, image, and scrolling ticker synchronization. The and objects roSyncManager roVideoPlayer roImagePlayer
rely on values generated by the and methods to synchronize playback, while the object ifSyncManager roSyncManagerEvent roTextWidget
simply requires the domain name of the instance.roSyncManager

As of firmware version 7.0, roSyncManager also supports Genlock synchronization (frame-accurate VSync) over Ethernet. To enable Genlock on
an roSyncManager domain, pass the domain name to the roVideoMode.SetSyncDomain() method. Otherwise, the process for synchronizing
video, image, and ticker playback is the same.

Before using , you will need to instantiate a synchronization group by setting all players within the group to the same PTP domain roSyncManager
value. To do this, use the method to set the key of the “networking” section to a value between 0 and roRegistrySection.Write() ptp_domain
127. In general, changes to the registry only take effect after a reboot, so the PTP synchronization service will start on each player after it is
rebooted.

Example
regSec = CreateObject("roRegistrySection", "networking")
regSec.Write("ptp_domain", "0")
regSec.Flush()

RebootSystem()

Object Creation: The object is created with an associative array representing a set of parameters.roSyncManager

CreateObject("roSyncManager", parameters as roAssociativeArray)

The associative array can have the following parameters:

[string] Domain: An identifier that is used to distinguish among different instances within the same synchronization roSyncManager
group (i.e. PTP domain). The default string is "BrightSign". This parameter allows multiple instances to operate at the roSyncManager
same time.

MulticastAddress[string] : The multicast address to which synchronization messages are communicated. The default address is
"224.0.126.10".

MulticastPort[string] : The multicast port to which synchronization messages are communicated. The default port is "1539".

ifMessagePort

SetPort(port As roMessagePort)

Note

The object supports synchronization over Ethernet networks . roSyncManager only

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Posts messages of type to the attached message port. Use these messages to synchronize and roSyncManagerEvent roVideoPlayer roImagePla
 playback.yer

ifSyncManager

SetMasterMode(master_mode As Boolean) As Boolean

Specifies whether the unit is running the master instance of .roSyncManager

Synchronize(identifier As String, ms_delay As Integer) As Object

Broadcasts a time-stamped message to other players. This method is used on the master unit only. The message will be rebroadcasted every
second to allow slave units that are powered on late to catch up. The network message contains the sync ID, as well as the domain and a
timestamp. The timestamp is created at the point when this method is called; however, it can be offset by passing a non-zero value, ms_delay
allowing synchronization points to be set slightly in the future and giving the client enough time to switch video files and perform other actions.
The parameter allows the script on the master unit to pass a filename, or some other useful marker, to the slave units as part of the identifier
synchronization message. This method returns the message that is sent out so that the master can access the timestamp.

The synchronization message is sent over all available networks (including WiFi), but slave units will use only the first message received. The
PTP messages, which are used by the firmware during synchronization, are sent over Ethernet only.

Currently, there are two objects that can accept synchronization parameters: The call accepts the parameters provided roVideoPlayer.PlayFile()
by messages, while the and calls accept in SyncManagerEvent roImagePlayer.DisplayFile() roImagePlayer.PreloadFile() SyncIsoTimestamp
an associative array. To synchronize image playback, an object will simply delay the transition thread prior to running the roImagePlayer
transition. If there is a separate call for , then the transition will be cancelled and the image will be displayed immediately (as DisplayFile()
with non-synchronized calls).DisplayFile()

Examples

The following script synchronizes video playback on the master and slave units.

Example
' Create a sync manager with default address and port.
aa1=CreateObject("roAssociativeArray")
aa1.Domain = "BS1"
s=CreateObject("roSyncManager", aa1)
p=CreateObject("roMessagePort")
s.SetPort(p)

' Create a video player - we're going to play a seamlessly looped file
v=CreateObject("roVideoPlayer")
v.SetLoopMode(True)

' THIS SECTION IS ONLY DONE BY THE MASTER
' We're the master unit - send out a synchronize event saying that we're starting.
' playback 1000ms from now
s.SetMasterMode(True)
msg = s.Synchronize("Blah1", 1000)

' THIS SECTION IS ONLY DONE BY THE SLAVE
' We're a slave unit, and we're sitting waiting for a sync message.
msg=Wait(4000, p)

' EVERYONE DOES THE REST
aa=CreateObject("roAssociativeArray")
aa.Filename = "Text_1.mov"
aa.SyncDomain = msg.GetDomain()
aa.SyncId = msg.GetId()

Note

Because synchronization can involve slave units seeking to catch up with the playback of a master unit, we recommend using the more
efficient MOV/MP4 container format when synchronizing video files. Transport Stream files (MPEG-TS) are also supported, but they
must begin with a presentation timestamp (PTS) of 0. Program Stream files (MPEG-PS) are not supported.

aa.SyncIsoTimestamp = msg.GetIsoTimestamp()

v.PlayFile(aa)

roSyncManagerEvent

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifSyncManagerEvent
GetDomain() As String
GetId() As String
GetIsoTimestamp() As String

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

These events are generated on slave units in response to calls from the master unit. The on each roSyncManager.Synchronize() roSyncManager
slave unit will handle message duplicates, so the script will receive the sync message only once during normal operations.

If the slave unit is already booted up, then the event will arrive from the first network event generated by . On the roSyncManager.Synchronzie()
other hand, if the slave unit is booted up while the master is in the middle of playing a video file or displaying an image file, then one of the
message resends (generated at one second intervals by the master unit) will trigger the event. The script passes on the data from the event to
the command of the video player or the command of the image player, which will then determine how far forward PlayFile() DisplayFile()
in the file it needs to seek.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifSyncManagerEvent

GetDomain() As String

Returns the domain of the sync group, which is specified during creation of the object on the master unit.roSyncManager

GetId() As String

Returns the identifier of the event.

GetIsoTimestamp() As String

Returns the timestamp of the event in ISO format.

roTCPServer

Firmware Version 7.0

Version 7.0

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Version 6.2
Version 6.1
Previous Versions

ON THIS PAGE

ifTCPServerInstance
GetFailureReason() As String
SetPort(port As Object)
BindToPort(port As Dynamic) As Boolean

ifUserData
SetUserData(a As Object)
GetUserData() As Object

ifTCPServerInstance

GetFailureReason() As String

Yields additional useful information if an method fails.roTCPServer

SetPort(port As Object)

Sets the message port that will receive events from an instance.roTCPServer

BindToPort(port As Dynamic) As Boolean

Prepares to accept incoming TCP connections on the specified port. Passing an integer to this method will specify a standard port number. This
method can also accept an index of integer interfaces contained within an associative array, which can contain the following members:

-1: Any (this is the default value)
0: Ethernet
1: WiFi
2: Modem
32767: Loopback (i.e. TCP connections can only be established by internal sources)

ifUserData

SetUserData(a As Object)

Supplies an object that will be provided by every event called by an instance.roTCPServer

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

roTCPConnectEvent

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifSocketInfo
GetSourceAddress() As String

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

The event is posted when a new connection is made to an port. The normal response to receiving such an event is to create a new roTCPServer r
object and pass the event to its AcceptFrom call.oTCPStream

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifSocketInfo

GetSourceAddress() As String

Returns the IP address of the remote end of the TCP connection.

roUPnPActionResult

ON THIS PAGE

ifUPnPActionResult
GetType() As Integer
GetID() As Integer
GetResult() As Boolean
GetValues() As roAssociativeArray

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object contains the results of an call. It is important to match the transaction ID of this object with the value returned roUPnPService.Invoke()
by the Invoke() method.

ifUPnPActionResult

GetType() As Integer

Returns the result type, which can be one of the following:

1 – Invoke result
2 – Subscribe result

GetID() As Integer

Returns the transaction ID of the result as an integer. Use it to match the instance with the call that roUPnPActionResult roUPnPService.Invoke()
generated it.

GetResult() As Boolean

Returns True if the originating Invoke() call was successful.

GetValues() As roAssociativeArray

Returns an associative array containing the "out" values (if any) of the originating Invoke() call.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via SetUserData(). It will return Invalid if no data has been set.

roUPnPController

ON THIS PAGE

ifUPnPController
SetDebug(debug As Boolean) As Void
Search(searchTarget As String, mx As Integer) As Boolean

ifMessagePort
SetPort(port As roMessagePort)

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

UPnP Controller Operation

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object establishes and maintains a UPnP Control Point. It must exist for the entirety of UPnP discovery operations. Refer to the UPnP
 document for more information about UPnP discovery protocols. Device Architecture

Object Creation: The object is created without any parameters.roUPnPController

CreateObject("roUPnPController")

ifUPnPController

SetDebug(debug As Boolean) As Void

Enables detailed debugging in the UPnP engine.

Search(searchTarget As String, mx As Integer) As Boolean

Issues a Search request for a UPnP device. The parameters correspond to the ST (Search Target) and MX (Maximum wait time) header values
that are sent with a UPnP M-SEARCH command. Responses to the Search request will generate messages in the form of oroUPnPSearchEvent
bjects.

RemoveDevice(udn As String) As Boolean

Forces removal of the specified device from the Control Point device list. The passed string must include prepended to the UDN value."uuid:"

Note

The most common value for the searchTarget parameter is "upnp:rootdevice". This allows you to search all root devices, identify which
devices you wish to interact with, and then get the roUPnPDevice and UPnPService instances for these embedded devices and
services.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf

ifMessagePort

SetPort(port As roMessagePort)

Specifies the port that will receive events generated by the instance.roUPnPController

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

UPnP Controller Operation

The object maintains a list of all currently detected UPnP devices accessible via the local network. To maintain this list, the roUPnPController roU
 object follows these generally accepted control-point practices:PnPController

If an multicast notification is received from a device that is not part of the list, it is queried for its device information and ssdp:alive
added to the list. However, the message is not intended as the primary means for device discovery; rather, this behavior is ssdp:alive
intended to keep the list up-to-date and remove devices that disappear without an notification.ssdp:byebye

If an multicast notification is received form a device that is part of the list, it will be removed from the list.ssdp:byebye

The UPnP Controller allows a client to issue a Search request for UPnP devices. All devices on the network are expected to respond
directly to the requesting device. If a response is received from a device that is not part of the list, it is queried for its device information
and added to the list.
UPnP devices report a "time-to-live" for notifications. For UPnP NOTIFY and search-response messages, this is contained in the "Cache-
Control: max-age" header. Typically, this "time-to-live" is 20 or 30 minutes, though some devices have much shorter time values. Every
device is configured to expire after its "time-to-live" is reached, at which point it is removed from the device list. The counter is reset (i.e.
the device is renewed) after each receipt of an message.ssdp:alive

BrightScript does not allow direct access to its internal DeviceList. Rather, it raises events in the form of objects when roUPnPSearchEvent
devices are added or removed from the list. These objects can, in turn, be used to retrieve objects containing all device roUPnPDevice
information.

The controller also raises events whenever it receives a NOTIFY multicast message or a response to an M-SEARCH message (i.e. a response to
a controller search request). These events return associative arrays containing headers from the NOTIFY multicast message or from the HTTP
response to the M-SEARCH message.

The associative arrays may also contain additional non-header items. For an SSDP multicast message notification (type 0), the associative array
will contain an "ssdpType" key, the value of which designates whether it is a NOTIFY or M-SEARCH message. In most cases, it is best to ignore
M-SEARCH messages, unless you are implementing a UPnP device (the UPnP controller object does allow this).

During an M-SEARCH request, a "new device" notification (type 2) will only be sent when a device is added to the controller's internal list. Once a
device is part of the device list, subsequent M-SEARCH requests will only return type 1 (search response) values for that device. This type 1
response returns an associative array with message headers, but not an object (which is used to contain a complete set of device roUPnPDevice
information).

roUPnPDevice

ON THIS PAGE

ifUPnPDevice
GetUUID() As String
GetHeaders() As roAssociativeArray
GetDeviceInfo() As roAssociativeArray
GetEmbeddedDevices() As roAssociativeArray
GetEmbeddedDevice(deviceType As String) As roUPnPDevice
GetServices() As roAssociativeArray
GetService(serviceType As String) As roUPnPService

See the roUPnPSearchEvent page for more information about the messages sent by the UPnP Controller.

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is returned by the method under certain conditions.roUPnPSearchEvent.GetObject()

ifUPnPDevice

GetUUID() As String

GetHeaders() As roAssociativeArray

Returns an associative array of headers (including vendor-specific extensions) associated with the advertisement or search.

GetDeviceInfo() As roAssociativeArray

Returns an associative array of device metadata from the device XML (applicable to root items only).

GetEmbeddedDevices() As roAssociativeArray

Returns an associative array of embedded object instances, keyed by device type.roUPnPDevice

GetEmbeddedDevice(deviceType As String) As roUPnPDevice

Returns an instance, using the specified deviceType as a unique identifier. The parameter must use one of the roUPnPDevice deviceType
following formats:

urn:schemas-upnp:device:deviceType:v: Search for any device of this type. The and version (v) are defined by deviceType
the UPnP Forum working committee.
urn:domain-name:device:deviceType:v: Search for any device of this type. The domain-name, , and version (v) are deviceType
defined by the UPnP vender. Period characters in the domain name must be replaced with hyphens in accordance with RFC2141.

GetServices() As roAssociativeArray

Returns an associative array of embedded object instances, keyed by type.roPnPService

GetService(serviceType As String) As roUPnPService

Returns an instance of the specified type.roUPnPService

roUPnPSearchEvent

ON THIS PAGE

ifUPnPSearchEvent
GetObject() As Object
GetType() As Integer

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2

Version 6.1
Previous Versions

This event object is returned when there is a response to a operation. It is also returned when the oroUPnPController.Search() roUPnPController
bject receives multicast UDP SSDP messages.

ifUPnPSearchEvent

GetObject() As Object

Returns either an or an instance, depending on the value returned from the GetType() method.roUPnPDevice roAssociativeArray

GetType() As Integer

Returns an integer value indicating the type of response:

0 (Advertisement) – Indicates the receipt of an SSDP multicast message, which can be either a NOTIFY message or an M-SEARCH
message. The method will return an associative array with all SSDP headers and an "ssdpType" key, which can have a GetObject()
value of either "m-search" or "notify".
1 (Search response) – Indicates that the message is a response to an request. The method roUPnPControllor.Search() GetObject()
will return an associative array with all headers from the HTTP M-SEARCH response.
2 (New device added to the device list) – Indicates that the object has detected a new device and added it to the roUPnPController
device list, which is maintained internally. Device detection can result from receiving either an message or a response to ssdp:alive
an M-SEARCH message. The method will return an instance containing information about the added GetObject() roUPnPDevice
device. This message type is only delivered once per new device. Once a device is part of the device list, subsequent M-SEARCH
requests will only return type 1 (Search response) values for that device.
3 (Device will be deleted from the device list) – Indicates that a device will be deleted from the device list, which is maintained internally.
A device is deleted from the list when the player receives an ssdp:byebye message from the device, when the device does not send an s

 message within the defined "max-age" interval, or when the device is forcibly removed using the sdp:alive roUPnPController.
method. The method will return an instance containing information about the device to RemoveDevice() GetObject() roUPnPDevice

be removed.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

roUPnPService

ON THIS PAGE

ifUPnPService
Invoke(actionName As String, params As Object) As Integer
Subscribe() As Integer
RenewSubscription() As Integer
GetSID() As String
GetTimeout() As Integer

ifMessagePort
SetPort(port As roMessagePort)

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1

https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript

Previous Versions

This object is returned by the and methods on the GetServces() GetService() roUPnPDevice object.

ifUPnPService

Invoke(actionName As String, params As Object) As Integer

Invokes an action asynchronously on the UPnP service. This method returns a transaction ID that can be used to match it against the associated r
instance.oUPnPActionResult

Subscribe() As Integer

Subscribes to events on the UPnP service asynchronously.

RenewSubscription() As Integer

Resubscribes to events on the UPnP service asynchronously. This method should only be called after calling .Subscribe()

GetSID() As String

Returns the subscription ID. This method should only be called after calling .Subscribe()

GetTimeout() As Integer

Returns the service timeout period. This method should only be called after calling .Subscribe()

ifMessagePort

SetPort(port As roMessagePort)

Specifies the port that will receive events generated by the instance.roUPnPService

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via SetUserData(). It will return Invalid if no data has been set.

roUPnPServiceEvent

ON THIS PAGE

ifUPnPServiceEvent
GetUUID() As String
GetVariable() As String
GetValue() As String
GetSequence() As Integer

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1

http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript

Previous Versions

This event object is returned whenever a UPnP event message is received (for example, from a Subscribe() operation on the objeroUPnPService
ct). If a UPnP event message contains multiple state variables, separate event objects will be returned for each state variable.

ifUPnPServiceEvent

GetUUID() As String

Returns the subscription ID of the subscription service sending the event. This string matches the value returned by the GetSID() method of the ro
instance that generated the event.UPnPService

GetVariable() As String

Returns the name of the UPnP state variable to which the value corresponds.

GetValue() As String

Returns the value of the variable.

GetSequence() As Integer

Returns the incrementing sequence number, which denotes the UPnP message from which the update originated. The sequence number will be
the same for multiple variable updates reported in a single UPnP event.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via SetUserData(). It will return Invalid if no data has been set.

roTCPStream

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

ON THIS PAGE

ifStreamReceive
SetLineEventPort(a As Object)
SetByteEventPort(a As Object)
SetReceiveEol(a As String)
SetMatcher(matcher As Object) As Boolean

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifStreamSend
SetSendEol(eol_sequence As String) As Void
SendByte(byte As Integer) As Void
SendLine(string As String) As Void
SendBlock(a As Dynamic) As Void
Flush()

ifTCPStream
GetFailureReason() As String
ConnectTo(a As String, b As Integer) As Boolean
Accept(a As Object) As Boolean

http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

AsyncConnectTo(a As String, b As Integer) As Boolean

ifStreamReceive

SetLineEventPort(a As Object)

SetByteEventPort(a As Object)

SetReceiveEol(a As String)

SetMatcher(matcher As Object) As Boolean

Instructs the stream to use the specified matcher. This object returns True if successful. Pass Invalid to this method to stop using the specified
matcher.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via SetUserData(). It will return Invalid if no data has been set.

ifStreamSend

SetSendEol(eol_sequence As String) As Void

Sets the EOL sequence when writing to the stream. The default value is CR (ASCII value 13). If you need to set this value to a non-printing
character, use the global function.chr()

SendByte(byte As Integer) As Void

Writes the specified byte to the stream.

SendLine(string As String) As Void

Writes the specified characters to the stream followed by the current EOL sequence.

SendBlock(a As Dynamic) As Void

Writes the specified characters to the stream. This method can support either a string or an . If the block is a string, any null bytes will roByteArray
terminate the block.

Flush()

ifTCPStream

GetFailureReason() As String

Yields additional useful information if an method fails.roTCPStream

ConnectTo(a As String, b As Integer) As Boolean

Connects the stream to the specified host (designated using a dotted quad) and port. The function returns True upon success.

Accept(a As Object) As Boolean

Accepts an incoming connection event. The function returns True upon success.

AsyncConnectTo(a As String, b As Integer) As Boolean

Attempts to connect the stream to the specified host (designated using a dotted quad) and port. The function returns False if this action is
immediately impossible (for example, when the specified host is not in the correct format). Otherwise, the function returns True upon success.
The connect proceeds in the background, and an is posted to the associated message port when the connect roStreamConnectResultEvent
attempt succeeds or fails.

roUrlTransfer

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifIdentity
GetIdentity() As Integer

ifMessagePort
SetPort(port As roMessagePort) As Void

ifUrlTransfer
SetUrl(URL As String) As Boolean
AddHeader(name As String, value As String) As Boolean
GetToString() As String
GetToFile(filename As String) As Integer
AsyncGetToString() As Boolean
AsyncGetToFile(filename As String) As Boolean
EnableResume(enable As Boolean) As Boolean
Head() As Object
AsyncHead() As Boolean
PostFromString(request As String) As Integer
PostFromFile(filename As String) As Integer
AsyncPostFromString(request As String) As Boolean
AsyncPostFromFile(filename As String) As Boolean
SetUserAndPassword(user As String, password As String) As Boolean
SetMaximumReceiveBytesPerSecond(bytes_per_second as Double) As Boolean
SetMaximumSendBytesPerSecond(bytes_per_second as Double) As Boolean
SetMinimumTransferRate(bytes_per_second As Integer, period_in_seconds As Integer) As Boolean
GetFailureReason() As String
SetHeaders(a As Object) As Boolean
AsyncGetToObject(type As String) As Boolean
AsyncCancel() As Boolean
EnableUnsafeAuthentication(enable As Boolean) As Boolean
EnableUnsafeProxyAuthentication(enable As Boolean) As Boolean
EnablePeerVerification(verification As Boolean) As Boolean
EnableHostVerification(verification As Boolean) As Boolean
SetCertificatesFile(filename As String) As Boolean
SetClientCertificate(parameters As roAssociativeArray) As Boolean
SetCookie(cookie As String) As Boolean
SetCookieFile(filename As String) As Boolean
GetCookies() As roList
EnableEncodings(enable As Boolean) As Boolean
SetUserAndPassword(a As String, b As String) As Boolean
Head() As Object
Escape(unescaped As String) As String
Unescape(a As String) As String
GetUrl() As String
SetProxy(proxy As String) As Boolean
SetProxyBypass(hostnames As Array) As Boolean
PutFromString(a As String) As Integer
SetTimeout(milliseconds As Integer) As Boolean
SetUserAgent(a As String) As Boolean
PutFromFile(a As String) As Integer
AsyncPutFromString(a As String) As Boolean
AsyncPutFromFile(a As String) As Boolean

Delete() As Object
AsyncDelete() As Boolean
ClearHeaders() As Void
AddHeaders(a As Object) As Boolean
SyncMethod(a As Object) As Object
SetRelativeLinkPrefix(prefix As String) As Boolean
BindToInterface(interface As Integer) As Boolean
AsyncMethod(parameters As roAssociativeArray) As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is used for reading from and writing to remote servers through URLs. It reports transfer status using the object.roUrlEvent

Object Creation: This object is created with no parameters.

CreateObject("roUrlTransfer")

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via SetUserData(). It will return Invalid if no data has been set.

ifIdentity

GetIdentity() As Integer

Returns a unique number that can be used to identify when events originate from this object.

ifMessagePort

SetPort(port As roMessagePort) As Void

Sets the message port to which events will be posted for asynchronous requests.

ifUrlTransfer

SetUrl(URL As String) As Boolean

Sets the URL for the transfer request. This function returns False on failure. Use to learn the reason for the failure.GetFailureReason

When using SetUrl to retrieve content from local storage, you do not need to specify the full file path: SetUrl("file:/example.html") . If
the content is located somewhere other than the current storage device, you can specify it within the string itself. For example, you can use the
following syntax to retrieve content from a storage device inserted into the USB port when the current device is an SD card: SetUrl(" file://

 ") /USB1:/example.html .

Note

You must create a separate instance for each asset you wish to read/write.roUrlTransfer

Note

The interface has been deprecated. We recommend using the interface instead.ifIdentity ifUserData

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

AddHeader(name As String, value As String) As Boolean

Adds the specified HTTP header. This is only valid for HTTP URLs. This function returns False on failure. Use to learn GetFailureReason()
the reason for the failure.

GetToString() As String

Connects to the remote service as specified in the URL and returns the response body as a string. This function cannot return until the exchange
is complete, and it may block for a long time. Having a single string return means that much of the information (headers, response codes) has
been discarded. If you need this information, you can use instead.AsyncGetToString()

GetToFile(filename As String) As Integer

Connects to the remote service as specified in the URL and writes the response body to the specified file. This function does not return until the
exchange is complete and may block for a long time. The response code from the server is returned. It is not possible to access any of the
response headers. If you need this information, use instead.AsyncGetToFile()

AsyncGetToString() As Boolean

Begins a GET request to a string asynchronously. Events will be sent to the message port associated with the object. If False is returned, then
the request could not be issued and no events will be delivered.

AsyncGetToFile(filename As String) As Boolean

Begins a GET request to a file asynchronously. Events will be sent to the message port associated with the object. If False is returned, then the
request could not be issued and no events will be delivered.

EnableResume(enable As Boolean) As Boolean

Specifies the file-creation behavior of the and methods. If this method is set to False (the default setting), GetToFile() ASyncGetToFile()
each download will generate a temporary file: if the download is successful, the temporary file will be renamed to the specified filename; if the
download fails, the temporary file will be deleted. If this method is set to True, the file with the specified filename will be created regardless of
whether the download is successful or not—this allows the download to be resumed by a subsequent or call.GetToFile() ASyncGetToFile()

Head() As Object

Synchronously perform an HTTP HEAD request and return the resulting response code and headers through an object. In the event roUrlEvent
of catastrophic failure (e.g. an asynchronous operation is already active), a null object is returned.

AsyncHead() As Boolean

Begins an ansynchronous HTTP HEAD request. Events will be sent to the message port associated with the object. If the request could not be
issued, the method will return False and will not deliver any events.

PostFromString(request As String) As Integer

Uses the HTTP POST method to post the supplied string to the current URL and return the response code. Any response body is discarded.

PostFromFile(filename As String) As Integer

Uses the HTTP POST method to post the contents of the file specified to the current URL and then return the response code. Any response body
is discarded.

AsyncPostFromString(request As String) As Boolean

Uses the HTTP POST method to post the supplied string to the current URL. Events of type will be sent to the message port roUrlEvent
associated with the object. A False return indicates that the request could not be issued and no events will be delivered.

AsyncPostFromFile(filename As String) As Boolean

Uses the HTTP POST method to post the contents of the specified file to the current URL. Events of the type will be sent to the roUrlEvent
message port associated with the object A False return indicates that the request could not be issued and no events will be delivered.

SetUserAndPassword(user As String, password As String) As Boolean

The size of the returned string is limited to 65,536 characters.

Enables HTTP authentication using the specified user name and password. Note that HTTP basic authentication is deliberately disabled due to it
being inherently insecure. HTTP digest authentication is supported.

SetMaximumReceiveBytesPerSecond(bytes_per_second as Double) As Boolean

Limits the rate at which downloads are performed by the instance. The source data rate isn't under the direct control of the roUrlTransfer
BrightSign player, but download rates should average below the specified value over time.

This method returns on success and on failure. In event of failure, the method may provide more true false GetFailureReason()
information.

SetMaximumSendBytesPerSecond(bytes_per_second as Double) As Boolean

Limits the rate at which uploads are performed by the instance.roUrlTransfer

This method returns on success and on failure. In event of failure, the method may provide more true false GetFailureReason()
information.

SetMinimumTransferRate(bytes_per_second As Integer, period_in_seconds As Integer) As Boolean

Causes the transfer to be terminated if the rate drops below when averaged over . Note that if the bytes_per_second period_in_seconds
transfer is over the Internet, you may not want to set to a small number in case network problems cause temporary drops period_in_seconds
in performance. For large file transfers and a small limit, averaging fifteen minutes or more might be appropriate.bytes_per_second

GetFailureReason() As String

May provide additional information if any of the methods indicate failure.roUrlTransfer

SetHeaders(a As Object) As Boolean

AsyncGetToObject(type As String) As Boolean

Begins an asynchronious GET request and uses the contents to create an object of the specified type. Events will be sent to the message port
associated with the object. If this method returns False, the request could not be issued and no events will be delievered.

AsyncCancel() As Boolean

EnableUnsafeAuthentication(enable As Boolean) As Boolean

Supports basic HTTP authentication if True. HTTP authentication uses an insecure protocol, which might allow others to easily determine the
password. The object will still prefer the stronger digest HTTP if it is supported by the server. If this method is False (which is the roUrlTransfer
default setting), it will refuse to provide passwords via basic HTTP authentication, and any requests requiring this authentication will fail.

EnableUnsafeProxyAuthentication(enable As Boolean) As Boolean

Supports basic HTTP authentication against proxies if True (which, unlike , is the default setting). HTTP EnableUnsafeAuthentication()
authentication uses an insecure protocol, which might allow others to easily determine the password. If this method is False, it will refuse to
provide passwords via basic HTTP authentication, and any requests requiring this authentication type will fail.

EnablePeerVerification(verification As Boolean) As Boolean

Enables checking of TLS/SSL certificates. This method is set to by default. Disabling peer verficiation allows you to bypass an expired true
certificate check.

EnableHostVerification(verification As Boolean) As Boolean

Enables checking of the TLS/SSL certificate for the correct hostname. This method is set to by default. Disabling host verification allows true
you to accept a certificate being sent for the wrong hostname.

SetCertificatesFile(filename As String) As Boolean

Important

Peer verficiation and host verification are important security checks that prevent "man-in-the-middle" attacks. These features should
only be disabled after careful consideration of the security implications.

Configures an alternative set of CA certificates for the connection. This method is useful if the connection certificates are signed by a CA that is
not on the the default trusted list (for example, if your organization uses a private CA hierarchy that is not signed by a well known root CA). This
method replaces the default list, so the passed certificate file must contain all acceptable CA certificates required for the connection.

SetClientCertificate(parameters As roAssociativeArray) As Boolean

Specifies an HTTPS Client Certificate for use with server authentication. PKCS#12 certificates are not supported. This method accepts an
associative array with the following parameters:

certificate_file: The filename of the Client Certificate file

key_file: The filename of the key file. You do not need to specify a key file if the key is embedded in the Client Certificate file (which
might be the case when using PEM format).
type: Either "PEM" or "DER"

passphrase: The string passphrase to use if the key is encrypted

obfuscated_passphrase: The obfuscated string passphrase to use if the key is encrypted.

SetCookie(cookie As String) As Boolean

Adds the specified cookie to the player storage and enables the cookie parsing/sending engine. The cookie can be either a single line in Netscape
/Mozilla format or a standard HTTP-style header (i.e.). You can also carry out commands by passing these exact strings to the Set-Cookie:
method:

"ALL": Erases all cookies held in memory.
"SESS": Erases all session cookies held in memory.
"RELOAD": Loads all cookies from files specified by SetCookieFile() calls.

SetCookieFile(filename As String) As Boolean

Adds cookies to the player storage using the specified cookie file and enables the cookie parsing/sending engine. The cookie data can be in
either Netscape/Mozilla format or standard HTTP format.

GetCookies() As roList

Returns a string list of all cookies (including expired cookies).

EnableEncodings(enable As Boolean) As Boolean

Enables HTTP compression, which communicates to the server that the system can accept any encoding that the object is capable roUrlTransfer
of decoding by itself. This currently includes "deflate" and "gzip", which allow for transparent compression of responses. Clients of the roUrlTransf

 instance see only the decoded data and are unaware of the encoding being used.er

SetUserAndPassword(a As String, b As String) As Boolean

Head() As Object

Performs a synchronous HTTP HEAD request and returns the resulting response code and headers through an object. In the event roURLEvent
of catastrophic failure (e.g. an asynchronous operation is already active), a null object is returned.

Escape(unescaped As String) As String

Converts the provided string to a URL-encoded string. All characters that could be misinterpreted in a URL context are converted to the form.%XX

Unescape(a As String) As String

GetUrl() As String

Note

If any of the parameters are set incorrectly, you'll likely get a -35 error when making a request.

Note

HTTP compression is enabled by default in firmware versions 6.0.x and later.

SetProxy(proxy As String) As Boolean

Sets the name or address of the proxy server that will be used by the instance. The proxy string should be formatted as follows: roUrlTransfer
"http://user:password@hostname:port". It can contain up to four "*" characters; each "*" character can be used to replace one octet from the
current IP address. For example, if the IP address is currently 192.168.1.2, and the proxy is set to "proxy-*-*", then the player will attempt to use a
proxy named "proxy-192.168".

SetProxyBypass(hostnames As Array) As Boolean

Exempts the specified hosts from the proxy setting. The passed array should consist of one or more hostnames. The player will attempt to reach
the specified hosts directly rather than using the proxy that has been specified with the method. For example, the hostname SetProxy()
"example.com" would exempt "example.com", "example.com:80", and "www.example.com" from the proxy setting.

PutFromString(a As String) As Integer

Uses the HTTP PUT method to write the supplied string to the current URL and return the response code. Any response body is discarded; use ro
 to retrieve the response body.UrlTransfer.SyncMethod

SetTimeout(milliseconds As Integer) As Boolean

Terminates the transfer if the request takes longer than the specified number milliseconds. Note that this includes the time taken by any name
lookups, so setting this value too low will cause undesirable results. Passing 0 to the method disables the timeout. This method returns True upon
success and False upon failure. In the event of failure, using the method may provide more information. If the operation GetFailureReason()
times out, the status return is -28.

SetUserAgent(a As String) As Boolean

PutFromFile(a As String) As Integer

Uses the HTTP PUT method to write the contents of the specified file to the current URL and return the response code. Any response body is
discarded; use to retrieve the response body.roUrlTransfer.SyncMethod

AsyncPutFromString(a As String) As Boolean

Uses the HTTP PUT method to write the supplied string to the current URL. Events of type will be sent to the message port roUrlEvent
associated with the object. A False return indicates that the request could not be issued and no events will be delivered. Any response body is
discarded; use to retrieve the response body.roUrlTransfer.AsyncMethod

AsyncPutFromFile(a As String) As Boolean

Uses the HTTP PUT method to write the contents of the specified file to the current URL. Events of type will be sent to the message roUrlEvent
port associated with the object. A False return indicates that the request could not be issued and no events will be delivered. Any response body
is discarded; use to retrieve the response body.roUrlTransfer.AsyncMethod

Delete() As Object

Uses the HTTP DELETE method to delete the resource at the current URL and return the response code. Any response body is discarded; use ro
 to retrieve the response body.UrlTransfer.SyncMethod

AsyncDelete() As Boolean

Uses the HTTP DELETE method to delete the resource at the current URL. Events of type will be sent to the message port associated roUrlEvent
with the object. A False return indicates that the request could not be issued and no events will be delivered. Any response body is discarded;
use to retrieve the response body.roUrlTransfer.AsyncMethod

ClearHeaders() As Void

Removes all headers that would be supplied with an HTTP request.

AddHeaders(a As Object) As Boolean

Adds one or more headers to HTTP requests. Pass headers to this object as an of name/value pairs. This method returns roAssociativeArray
True upon success and False upon failure. All headers that are added with this method will continue to be sent with HTTP requests until ClearHe

 is called.aders()

SyncMethod(a As Object) As Object

Performs a synchronous HTTP method request using the specified parameters. If the request is started successfully, then the method returns an
roUrlEvent object containing the results of the request. This method returns Invalid if the the request could not be started. In this case, the GetFa

 method may provide more information.ilureReason()

SetRelativeLinkPrefix(prefix As String) As Boolean

Places the specified prefix in front of the URL if the URL is relative. Use this method to easily make URLs drive agnostic.file:///

BindToInterface(interface As Integer) As Boolean

Ensures that the request only goes out over the specified network interface. By default, the request goes out over the most appropriate network
interface (which may depend on the routing metric configured via). Note that if both interfaces are on the same layer 2 roNetworkConfiguration
network, this method may not always work as expected due to the Linux weak host model. The default behavior can be selected by passing -1 to
the method. This method returns False upon failure. In this case, the method may provide more information.GetFailureReason()

AsyncMethod(parameters As roAssociativeArray) As Boolean

Begins an asynchronous HTTP method request using the specified parameters (see below). If the request is started successfully, the method
returns True and and will deliver an event. If the request could not be started, then the method returns False and will not deliver an event. If this
occurs, you may be able to use the method to get more information.GetFailureReason()

The parameters are sepecifed using an instance that may contain the following members:roAssociativeArray

Name Type Description

method String An HTTP method. Normal values include
"HEAD", "GET", "POST", "PUT", and
"DELETE". Other values are supported;
however, depending on server behavior,
they may not work as expected.

request_body_string String A string containing the request body.

request_body_file String The name of a file that contains the request
body

response_body_string Boolean If specified and set to True, the response
will be stored in a string and provided via
the method.roUrlEvent.GetString()

response_body_file String The name of the file that will contain the
response body. The body is written to a
temporary file and then renamed to the
specified filename if successful.

response_body_resume_file String The name of the file that will contain the
response body. For a GET request, a
RANGE header is sent based on the current
size of the file, which is written in place
rather than using a temporary file.

response_body_object String Uses the response body to create an object
of the specified type. See the entry for
AsyncGetToObject() for supported object
types.

response_pipe roArray Use a pipeline of handlers to process the
response body as it is received. See below
for more details.

The response for consists of one or more instances containing a filter description (see below). The roArray response_pipe roAssociativeArray
last associative array is usually an output filter.

Name Type Description

hash String Calculate a hash (digest) of the data using
the specified algorithm as it passes through
the pipeline. Supported hashes include the
following: "CRC32", "MD5", "SHA1",

"SHA256", "SHA384", "SHA512". The
resulting hash can be retrieved as a
hexadecimal string using the roUrlEvent.

method.GetHash()

decompress String Decompress the response body using the
specified algorithm. Currently, the only
supported algorithm is “gzip”. It is often
easier to use an HTTP Content-Encoding
rather than explicitly decompressing the
body.

prefix_capture Integer Capture the specified number of bytes
(between 1 and 16384) from the start of the
stream and store them separately. The
bytes can be retrieved using the roUrlEvent.

method, but they cannot be GetPrefix()
passed on to subsequent filters.

output file String Output the pipeline to the specified file. The
output is written to a temporary file and then
renamed to the specified filename if
successful.

output_string Boolean If specified and set to True, the response
will be stored in a string and provided via
the method.roUrlEvent.GetString()

The following example code specifies an array of handlers to filter the response body of an HTTP request.

url = CreateObject("roUrlTransfer")
pipe = [{ decompress: "gzip"}, { hash: "MD5" }, { output_file: "test.txt" }]
result = url.AsyncMethod({ method: "GET", response_pipe: pipe })

roUrlEvent

ON THIS PAGE

ifInt
GetInt() As Integer

ifString
GetString() As String

ifUserData
SetUserData(user_data As Object) As Void
GetUserData() As Object

ifSourceIdentity
GetSourceIdentity() As Integer

ifUrlEvent
GetResponseCode() As Integer
GetObject() As Object
GetFailureReason As String
GetSourceIdentity As Integer
GetResponseHeaders() As roAssociativeArray
GetHash() As String
GetPrefix() As String

Firmware Version 7.0

Version 7.0
Version 6.2

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2

Version 6.1
Previous Versions

This event is generated by the object.roUrlTransfer

ifInt

GetInt() As Integer

Returns the type of event. The following event types are currently defined:

1: transfer complete

2: transfer started

ifString

GetString() As String

Returns the string associated with the event. For transfer-complete , , and AsyncGetToString() AsyncPostFromString() AsyncPostFrom
requests, this will be the actual response body from the server, truncated to 65,536 characters.File()

ifUserData

SetUserData(user_data As Object) As Void

Sets the user data.

GetUserData() As Object

Returns the user data that has previously been set via (on either the event or source object). It will return Invalid if no data has SetUserData()
been set.

ifSourceIdentity

GetSourceIdentity() As Integer

Returns a unique number that can be matched with the value returned by to determine where this event originated.roUrlTransfer.GetIdentity()

ifUrlEvent

GetResponseCode() As Integer

Returns the protocol response code associated with an event. The following codes indicate success:

200: Successful HTTP transfer
226: Successful FTP transfer
0: Successful local file transfer

For unexpected errors, the return value is negative. There are many possible negative errors from the CURL library, but it is often best to look at
the text version by calling .GetFailureReason()

Here are some potential errors. Not all of them can be generated by a BrightSign player:

Status Name Description

-1 CURLE_UNSUPPORTED_PROTOCOL

-2 CURLE_FAILED_INIT

-3 CURLE_URL_MALFORMAT

Note

The interface has been deprecated. We recommend using the interface instead.ifSourceIdentity ifUserData

https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

-5 CURLE_COULDNT_RESOLVE_PROXY

-6 CURLE_COULDNT_RESOLVE_HOST

-7 CURLE_COULDNT_CONNECT

-8 CURLE_FTP_WEIRD_SERVER_REPLY

-9 CURLE_REMOTE_ACCESS_DENIED A service was denied by the server due to
lack of access. When login fails, this is not
returned.

-11 CURLE_FTP_WEIRD_PASS_REPLY

-13 CURLE_FTP_WEIRD_PASV_REPLY

-14 CURLE_FTP_WEIRD_227_FORMAT

-15 CURLE_FTP_CANT_GET_HOST

-17 CURLE_FTP_COULDNT_SET_TYPE

-18 CURLE_PARTIAL_FILE

-19 CURLE_FTP_COULDNT_RETR_FILE

-21 CURLE_QUOTE_ERROR Failed quote command

-22 CURLE_HTTP_RETURNED_ERROR

-23 CURLE_WRITE_ERROR

-25 CURLE_UPLOAD_FAILED Failed upload command.

-26 CURLE_READ_ERROR Could not open/read from file.

-27 CURLE_OUT_OF_MEMORY

-28 CURLE_OPERATION_TIMEDOUT The timeout time was reached.

-30 CURLE_FTP_PORT_FAILED FTP PORT operation failed.

-31 CURLE_FTP_COULDNT_USE_REST REST command failed.

-33 CURLE_RANGE_ERROR RANGE command did not work.

-34 CURLE_HTTP_POST_ERROR

-35 CURLE_SSL_CONNECT_ERROR Wrong when connecting with SSL.

-36 CURLE_BAD_DOWNLOAD_RESUME Could not resume download.

-37 CURLE_FILE_COULDNT_READ_FILE

-38 CURLE_LDAP_CANNOT_BIND

-39 CURLE_LDAP_SEARCH_FAILED

-41 CURLE_FUNCTION_NOT_FOUND

-42 CURLE_ABORTED_BY_CALLBACK

-43 CURLE_BAD_FUNCTION_ARGUMENT

-45 CURLE_INTERFACE_FAILED CURLOPT_INTERFACE failed.

-47 CURLE_TOO_MANY_REDIRECTS Catch endless re-direct loops.

-48 CURLE_UNKNOWN_TELNET_OPTION User specified an unknown option.

-49 CURLE_TELNET_OPTION_SYNTAX Malformed telnet option.

-51 CURLE_PEER_FAILED_VERIFICATION Peer's certificate or fingerprint wasn't
verified correctly.

-52 CURLE_GOT_NOTHING When this is a specific error.

-53 CURLE_SSL_ENGINE_NOTFOUND SSL crypto engine not found.

-54 CURLE_SSL_ENGINE_SETFAILED Cannot set SSL crypto engine as default.

-55 CURLE_SEND_ERROR, Failed sending network data.

-56 CURLE_RECV_ERROR Failure in receiving network data.

-58 CURLE_SSL_CERTPROBLEM Problem with the local certificate.

-59 CURLE_SSL_CIPHER Could not use specified cipher.

-60 CURLE_SSL_CACERT Problem with the CA cert (path?)

-61 CURLE_BAD_CONTENT_ENCODING Unrecognized transfer encoding.

-62 CURLE_LDAP_INVALID_URL Invalid LDAP URL.

-63 CURLE_FILESIZE_EXCEEDED, Maximum file size exceeded.

-64 CURLE_USE_SSL_FAILED, Requested FTP SSL level failed.

-65 CURLE_SEND_FAIL_REWIND, Sending the data requires a rewind that
failed.

-66 CURLE_SSL_ENGINE_INITFAILED Failed to initialize ENGINE.

-67 CURLE_LOGIN_DENIED User, password, or similar field was not
accepted and login failed .

-68 CURLE_TFTP_NOTFOUND File not found on server.

-69 CURLE_TFTP_PERM Permission problem on server.

-70 CURLE_REMOTE_DISK_FULL Out of disk space on server.

-71 CURLE_TFTP_ILLEGAL Illegal TFTP operation.

-72 CURLE_TFTP_UNKNOWNID Unknown transfer ID.

-73 CURLE_REMOTE_FILE_EXISTS File already exists.

-74 CURLE_TFTP_NOSUCHUSER No such user.

-75 CURLE_CONV_FAILED Conversion failed.

-76 CURLE_CONV_REQD Caller must register conversion callbacks
using the following URL_easy_setopt
options:
CURLOPT_CONV_FROM_NETWORK_FUN
CTION
CURLOPT_CONV_TO_NETWORK_FUNCT
ION
CURLOPT_CONV_FROM_UTF8_FUNCTION

-77 CURLE_SSL_CACERT_BADFILE Could not load CACERT file, missing or
wrong format.

-78 CURLE_REMOTE_FILE_NOT_FOUND Remote file not found.

-79 CURLE_SSH Error from the SSH layer (this is somewhat
generic, so the error message will be
important when this occurs).

-80 CURLE_SSL_SHUTDOWN_FAILED Failed to shut down the SSL connection.

The following error codes are generated by the system software, and are outside the range of CURL events:

Status Name Description

-10001 ERROR_CANCELLED The transfer request has been cancelled
because the instance is out of roUrlTransfer
scope.

-10002 ERROR_EXCEPTION The callback threw an exception.

GetObject() As Object

Returns the object associated with the event. Currently, this method can only return an object created in response to an roUrlTransfer.
request.AsyncGetToObject

GetFailureReason As String

Returns a description of the failure that occurred.

GetSourceIdentity As Integer

Returns a unique number that can be matched with the value returned by to determine where the event came from.roUrlTransfer.GetIdentity()

GetResponseHeaders() As roAssociativeArray

Returns an associative array containing all the headers returned by the server for appropriate protocols (such as HTTP).

GetHash() As String

The hash (digest) of the response body, as specified by the parameter of the method.response_pipe{hash:} roUrlTransfer.AsyncMethod()

GetPrefix() As String

A number of bytes from the start of the response body. The amount of bytes is specified with the parameresponse_pipe{prefix_capture:}
ter of the method.roUrlTransfer.AsyncMethod()

Input/Output Objects

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This section describes objects that enable input/output functions on hardware interfaces.

roBtManager
roBtClientManager
roBtClientManagerEvent
roBtClient
roBtClientEvent
roCecInterface
roCecRxFrameEvent
roCecTxCompleteEvent
roChannelManager
roControlPort
roControlUp, roControlDown
roGpioButton
roGpioControlPort
roIRReceiver
roIRDownEvent, roIRRepeatEvent, roIRUpEvent
roIRTransmitter
roIRTransmitCompleteEvent
roIRRemote
roIRRemotePress
roKeyboard
roKeyboardPress
roSequenceMatcher
roSequenceMatchEvent
roSerialPort

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

roBtManager

ON THIS PAGE

ifMessagePort
SetPort(port As roMessagePort)

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifIdentity
GetIdentity() As Integer

ifBtPeripheralManager
GetFailureReason() As String
GetAdapterList() As roArray
StopAdvertising() As Boolean
GetAdvertisingList() As roArray
StartAdvertising(data As roAssociativeArray) As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object facilitates BLE one-way communication (i.e. "beaconing"): Use the object to discover whether any BLE adapters are roBtManager
present and to send BLE advertisements using the adapters.

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type to the attached message port. Use these messages to detect insertion or removal of Bluetooth adapters.roBtEvent

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Retrieves an arbitrary object set via the method.SetUserData()

ifIdentity

GetIdentity() As Integer

Returns a unique number that can be used to identify events that originate from the object instance.

ifBtPeripheralManager

GetFailureReason() As String

Returns additional diagnostic information if a method returns False.

Note

The interface has been deprecated. We recommend using the interface instead.ifIdentity ifUserData

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

GetAdapterList() As roArray

Returns an array describing all available Bluetooth adapters. Each entry in the array consists of an associative array containing adapter
properties. At present, each associative array contains a single property that describes the adapter name. Use this method to determine if name
Bluetooth adapters are connected to the player.

StopAdvertising() As Boolean

Stops all BLE advertisements. This method returns True on success and False on failure.

GetAdvertisingList() As roArray

Returns an array describing all active Bluetooth advertisements. Each entry in the array consists of an associative array describing a single
advertisement. The associative-array values correspond to the properties set using the method, but can also include StartAdvertising()
default parameter values that were not set explicitly. Note that all UUID values will be returned in lowercase.

StartAdvertising(data As roAssociativeArray) As Boolean

Begins transmitting a BLE "beacon" message. This method returns True on success and False on failure. Each message can contain data in a
standard format or arbitrary custom values. The message format is specified using the parameter, and other required values in the mode
associative array will depend on the value of this parameter:

mode:"beacon": This mode uses a simple beaconing format.

beacon_uuid: A string representation of a UUID, which can be in 16-bit, 32-bit, or 128-bit format. A 16-bit UUID must be
exactly four hex digits with no punctuation; a 32-bit UUID must be exactly eight hex digits with no punctuation; and a 128-bit
UUID must be punctuated exactly as follows: "cd7b6f81-f738-4cad-aebf-d2a2ea36d996".
beacon_major: An integer specifying the 2-byte Major value (0 to 65535)

beacon_minor: An integer specifying the 2-byte Minor value (0 to 65535)

beacon_level:(optional) An 8-bit signed integer (-127 to 128) that corresponds to the measurement of the Tx power level (in
dBm) at 1 meter. The default level is -60.
beacon_manufacturer:(optional) A 2-byte integer value (0 to 65535) specifying the beacon manufacturer. The default value
is 76 (&H4C).
connectable:(optional) A Boolean value indicating whether the advertisement should be connectable or not. Advertisements
are non-connectable by default.
persistent:(optional) A Boolean value indicating whether the advertisement should persist after every reboot. Beacon
advertisements are persistent by default.

mode:"eddystone-url": This mode uses the format.Eddystone-URL

url: The URL to encapsulate in the advertisement packet. If the URL is too long to fit in the packet, the StartAdvertising()
call will return False and will report "Compressed URL is too long".GetFailureReason()

tx_power:(optional) An integer value that corresponds to the measurement of the Tx power level (in dBm) at 0 meters. The
default value is -19, which corresponds to a level of -60dBm at 1 meter. The recommended calibration practice is to measure the
RSSI in a circle at 1 meter from the beacon, then add 41 to the average measured signal strength to get the value: tx_power
For example, measuring a -65dBm RSSI at 1 meter yields a value of -24.TxPower

connectable:(optional) A Boolean value indicating whether the advertisement should be connectable or not. Advertisements
are non-connectable by default.
persistent:(optional) A Boolean value indicating whether the advertisement should persist after every reboot. Eddystone-URL
advertisements are persistent by default.

mode:"custom": This mode supports arbitrary custom data in a vendor-specific field.

cutom_manufacturer_data:(optional) An associative array containing two keys:

manufacturer: A 2-byte integer value (0 to 65535)

data: An instance containing dataroByteArray
service_uuid:(optional) A set of ServiceUUID elements, which can be specified as either an array of UUID strings or an array
of associative arrays containing a key/value pair. Each associative array can also contain a key, which specifies uuid data
ServiceData as an instance.roByteArray
connectable:(optional) A Boolean value indicating whether the advertisement should be connectable or not. Advertisements
are non-connectable by default.
persistent:(optional) A Boolean value indicating whether the advertisement should persist after every reboot. Custom
advertisements are not persistent by default.

Note

The value does not modify the power level of the Bluetooth transmitter (this requires). tx_power physical attenuation
Rather, the value is transmitted to Bluetooth clients in the BLE advertisement. Clients can then compare tx_power
this value to the current RSSI of the signal to determine their approximate distance from the beacon.

https://github.com/google/eddystone/tree/master/eddystone-url
https://brightsign.zendesk.com/hc/en-us/articles/115000724413

To specify multiple advertisements, pass an array of associative arrays to the method. Advertisements will be sent in StartAdvertising()
rotation. The method will fail if one or more advertisement is incorrect—try each advertisement individually and call to GetFailureReason()
determine which advertisement is causing the error.

Calling the method will replace any previous advertisements. You can change a list of advertisements by modifying the StartAdvertising()
array and calling again.StartAdvertising()

This script uses to determine if there are any Bluetooth adapters available:roBtManager.GetAdapterList()

btm = CreateObject("roBtManager")
if btm.GetAdapterList().Count() > 0 then print "Bluetooth available"

This script constructs two associative arrays for advertising with the "beacon" format and then broadcasts them both:

adv1 = { mode : "beacon", beacon_uuid : "41fac2b21-c8cb-41e7-b011-12d1016dd39e", beacon_major
: 400, beacon_minor : 22 }
adv2 = { mode : "beacon", beacon_manufacturer: &H4C, beacon_uuid : "41fac221-c8cb-41e7-b011-
12d1016dd39e", beacon_major : &H1234, beacon_minor : &HFF01, beacon_level : -50 }

advlist = [adv1, adv2]
bm.StartAdvertising(advlist)

The associative array can also be constructed in parts:

adv1 = { mode: "beacon"}
adv1.Append({ beacon_uuid : "41fac221-c8cb-41e7-b011-12d1016dd39e" })
adv1.Append({ beacon_major : 32000, beacon_minor : 100 })

This script constructs an advertisement with the "Eddystone-URL" format. It uses the optional parameter as well:tx_power

adv1 = { mode: "eddystone-url", url: "http://www.brightsign.biz", tx_power: -24}

This script constructs a custom-formatted advertisement:

custom_adv = CreateObject("roByteArray")
custom_adv.FromHexString("0215434B2EB8C28F40898E7A1E644BB13B9FA000B001C5")
adv2 = { mode : "custom", custom_manufacturer_data : { manufacturer: &H4C, data : custom_adv
} }

roBtClientManager

ON THIS PAGE

ifBtClientManager
Start(params As roAssociativeArray) As Boolean

Stop() As Boolean
SetDeviceInfo(a As Object) As Boolean
SetDeviceData(a As Object) As Boolean

ifMessagePort
SetPort(a As Object)

ifIdentity
GetIdentity() As Integer

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifFailureReason
GetFailureReason() As String

This object represents a BLE GATT service, where the player acts as a peripheral and another device (phone, tablet, etc.) acts as the client
/central. Unlike , which allows for unidirectional, non-connectable communication (i.e. beaconing), the object is roBtManager roBtClientManager
used to facilitate two-way, connectable communication. It provides an event to an attached message port when a new client connects. It also
manages the client state, provides client update events, and times out the client after a period of inactivity.

The BLE clients themselves are represented by the object. roBtClient

ifBtClientManager

Start(params As roAssociativeArray) As Boolean

Starts BLE communication. This method accepts the following parameters:

client_timeout: The amount of time (in seconds) that a client can be inactive before being disconnected

service_uuid: A UUID that identifies the service

client_uuid: The client-identifier attribute. Once a client device connects to the player, it should write its unique client identifier value
to this attribute.
user_variable_uuid: The user variables attribute. This attribute is intended to be writable by both the player and the client, providing
the primary means for exchanging state data. User variables can be written as a JSON string.
command_uuid: The command attribute. When a client device writes to this attribute, an event containing the command string is
generated by the associated instance.roBtClient
device_info_uuid: The attribute for device information. This attribute is read-only for clients.

device_data_uuid: The attribute for device data. This attribute can be used to communicate available commands to clients. It is read-
only for clients.

Stop() As Boolean

Stops BLE communication.

SetDeviceInfo(a As Object) As Boolean

SetDeviceData(a As Object) As Boolean

ifMessagePort

SetPort(a As Object)

Posts messages of type to the attached message port. roBtClientManagerEvent

ifIdentity

GetIdentity() As Integer

Returns a unique number that can be used to identify objects that originate from this object.roBtClientManagerEvent

Note

There is a limit 512 bytes on each attribute.

Note

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifFailureReason

GetFailureReason() As String

Returns additional useful information when a method on the interface returns False.ifBtClientManager

roBtClientManagerEvent

ON THIS PAGE

ifBtEvent
GetEvent() As String
GetClient() As roBtClient

ifUserData
SetUserData(user_data As Object) As Void
GetUserData() As Object

This event object is generated by the object when a BLE client connects to or disconnects from the player. roBtClientManager

ifBtEvent

GetEvent() As String

Returns the name of the event, which can be one of the following:

: This value is returned the first time a client connects only."client-new"

: This value is returned when a client reaches the interval and is disconnected."client-delete" client-timeout

GetClient() As roBtClient

Returns the object for the client associated with the event. roBtClient

ifUserData

SetUserData(user_data As Object) As Void

Sets the user data.

GetUserData() As Object

Returns the user data that has previously been set via (on either the event or source object). It will return Invalid if no data has SetUserData()
been set.

roBtClient

ON THIS PAGE

ifBtClient

The interface has been deprecated. We recommend using the interface instead.ifIdentity ifUserData

GetClientId() As String
SetUserVars(data As String) As Boolean
GetUserVars() As String
Disconnect() As Boolean

ifMessagePort
SetPort(a As Object)

ifUserData
SetUserData(a As Object)
GetUserData() As Object

ifIdentity
GetIdentity() As Integer

ifFailureReason
GetFailureReason() As String

Each instance of this object represents a single BLE client. This object is not instantiated by the script; instead, when a BLE client connects to the
player, the object sends an event to its attached message port and creates a instance. roBtClientManager roBtClient

The primary purpose of the object is to transfer data between the player and the client via user variables (i.e. characteristics). When a roBtClient
client updates user-variables or sends a command, an is sent to the attached message port. The state can be retrieved using roBtClientEvent
either the method or the method: Updates from the object are queued until roBtClient.GetUserVars() roBtClientEvent.GetParam() roBtClientEvent
the script processes them, while the object returns the most current state.roBtClient

ifBtClient

GetClientId() As String

Retrieves the UUID of the client associated with the object instance.

SetUserVars(data As String) As Boolean

Specifies new data for the client to retrieve.

GetUserVars() As String

Retrieves the latest data from the state.roBtClient

Disconnect() As Boolean

Forces the player to disconnect from the client.

ifMessagePort

SetPort(a As Object)

Posts messages of type to the attached message port. An event is raised whenever the end of the queue is reached. roBtClientEvent

ifUserData

SetUserData(a As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifIdentity

GetIdentity() As Integer

Returns a unique number that can be used to identify objects that originate from this object.roBtClientEvent

Note

The interface has been deprecated. We recommend using the interface instead.ifIdentity ifUserData

ifFailureReason

GetFailureReason() As String

Returns additional useful information if a method on the interface returns False.ifBtClient

roBtClientEvent

ON THIS PAGE

ifBtClientEvent
GetEvent() As String
GetParam() As String

ifUserData
SetUserData(user_data As Object) As Void
GetUserData() As Object

This event object is generated by an object when a BLE client updates the state or sends a command.roBtClient roBtClient

ifBtClientEvent

GetEvent() As String

Returns the event name, which can currently be or ."client-update" "client-command"

GetParam() As String

Returns the event data as a string.

ifUserData

SetUserData(user_data As Object) As Void

Sets the user data.

GetUserData() As Object

Returns the user data that has previously been set via (on either the event or source object). It will return Invalid if no data has SetUserData()
been set.

roCecInterface

ON THIS PAGE

 IfCecInterface
SendRawMessage(packet As roByteArray) As Void
UseInitiatorAddressFromPacket(enable As Boolean) As Boolean
GetLogicalAddress() As Integer
EnableCecDebug(filename As String) As Void
GetPhysicalAddress() As roByteArray

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifMessagePort
SetPort(port As roMessagePort)

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object provides access to the HDMI CEC channel.

Object Creation: The object is created with no parameters.roCecInterface

CreateObject("roCecInterface")

 IfCecInterface

SendRawMessage(packet As roByteArray) As Void

Sends a message on the CEC bus. The frame data should be provided as an , with the destination address in the low 4 bits of the roByteArray
first octet. The high 4 bits of the first octet will be replaced with the source address unless source bit replacement is disabled using the UseIniti

 method.atorAddressFromPacket()

UseInitiatorAddressFromPacket(enable As Boolean) As Boolean

Removes the source address included by system software if passed True. This method allows you to transmit unmodified bytes via CEC.

GetLogicalAddress() As Integer

Returns the current logical address. This method will return the unregistered address (0x0f) to indicate that the logical address has not been
negotiated. In this case, messages can still be sent, but the receivers will behave differently and may not process all messages.

EnableCecDebug(filename As String) As Void

Enables CEC debugging. This method will write a log of all CEC packets to the specified file.

GetPhysicalAddress() As roByteArray

Returns the CEC physical address, which is sometimes required when processing CEC messages.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via SetUserData(). It will return Invalid if no data has been set.

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type to the attached message port.roCecRxFrameEvent and roCecTxCompleteEvent

roCecRxFrameEvent

ON THIS PAGE

Note

The physical address of the player is copied into the following messages automatically prior to transmission: ActiveSource,
InactiveSource, SystemAudioModeRequest.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifCecRxFrameEvent
GetByteArray() As Object

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

If an is attached to an instance, it will receive events of type .roMessagePort roCecInterface roCecRxFrameEvent

ifCecRxFrameEvent

GetByteArray() As Object

Returns the message data as an .roByteArray

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned by .GetUserData()

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

roCecTxCompleteEvent

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifCecRxFrameEvent
GetByteArray() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

If an is attached to an instance, it will receive events of type .roMessagePort roCecInterface roCecTxCompleteEvent

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned by .GetUserData()

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifCecRxFrameEvent

GetByteArray() As Object

Returns the message data as an .roByteArray

0x00 Transmission successful

0x80 Unable to send, CEC hardware powered down

0x81 Internal CEC error

0x82 Unable to send, CEC line jammed

0x83 Arbitration error

0x84 Bit-timing error

0x85 Destination address not acknowledged

0x86 Data byte not acknowledged

roChannelManager

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifMessagePort
SetPort(port As roMessagePort)

ifChannelManager
Synchronous API

Scan(parameters As roAssociativeArray) As Boolean
GetChannelCount() As Integer
ClearChannelData() As Boolean
GetCurrentSnr() As Integer
ExporttoXML() As String
ImportFromXML(a As String) As Boolean
EnableScanDebug(filename As String) As Boolean
CreateChannelDescriptor(a As Object) As Object

Asynchronous API
AsyncScan(parameters As roAssociativeArray) As Boolean
CancelScan() As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

You can use this object to manage RF channel scanning and tuning. The method also has channel scanning capabilities.roVideoPlayer

Object Creation: The object is created with no parameters.roChannelManager

CreateObject("roChannelManager")

ifUserData

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifMessagePort

SetPort(port As roMessagePort)

ifChannelManager

The interface provides both a Synchronous and Asynchronous API: ifChannelManager

Synchronous API

Scan(parameters As roAssociativeArray) As Boolean

Performs a channel scan on the RF input for both ATSC and QAM frequencies and builds a channel map based on what it finds. The roChannelM
 object stores a list of all channels that are obtained using the method (described below). The list is anager CreateChannelDescriptor()

cleared on each call to by default, but this behavior can be overridden.Scan()

Each channel takes approximately one second to scan; you can limit the scope of the channel scan with the following parameters:

["ChannelMap"] = "ATSC" or "QAM": Limits the frequency scan to either QAM or ATSC.
["ModulationType"] = "QAM64" or "QAM256": Limits the modulation type of the scan to QAM64 or QAM256.
["FirstRfChannel"] = Integer and/or ["LastRfChannel"] = Integer: Limits the scan to the specified range of channels. The high end of the
channel range is an optional parameter.
["ChannelStore"] = "DISCARD ALL" or "MERGE": Controls how the script handles previous channel scan information. The default setting
is DISCARD ALL, which clears all channel data prior to scanning. On the other hand, MERGE overwrites the data only for channels
specified in the scan.

GetChannelCount() As Integer

Returns the number of found channels.

ClearChannelData() As Boolean

Clears all stored channel scanning data, including that which persists in the registry. This method also cancels any calls that are AsyncScan()
currently running.

GetCurrentSnr() As Integer

Returns the SNR (in centibels) of the currently tuned channel.

ExporttoXML() As String

Serializes the contents of RF channels into XML. You can write the XML to a file that can be used at a later point on the same or other units. See
below for an example of XML output.

ImportFromXML(a As String) As Boolean

Retrieves the RF channel contents stored as XML. The formatting of the XML is controlled using version tags.

Example
<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<!DOCTYPE boost_serialization>
<boost_serialization signature="serialization::archive" version="7">
<ChannelList class_id="0" tracking_level="0" version="0">
<ChannelCount>2</ChannelCount>
<Channel class_id="1" tracking_level="0" version="0">
<RfChannel>42</RfChannel>
<ModulationType>7</ModulationType>
<SpectralInversion>0</SpectralInversion>

<MajorChannelNumber>1</MajorChannelNumber>
<MinorChannelNumber>1</MinorChannelNumber>
</Channel>
<Channel>
<RfChannel>42</RfChannel>
<ModulationType>7</ModulationType>
<SpectralInversion>0</SpectralInversion>
<MajorChannelNumber>1</MajorChannelNumber>
<MinorChannelNumber>2</MinorChannelNumber>
</Channel>
</ChannelList>

EnableScanDebug(filename As String) As Boolean

Allows all scan debugging to be written to a text file. By default, there is no debug output from a scan. You can close the debug file by passing an
empty string.

Example
c=CreateObject("roChannelManager")
c.EnableScanDebug("tmp:/scandebug.txt")

v = CreateObject("roVideoPlayer")
aa = CreateObject("roAssociativeArray")
aa["RfChannel"] = 12
aa["VirtualChannel"] = "24.1"
print v.PlayFile(aa)

c.EnableScanDebug("")

CreateChannelDescriptor(a As Object) As Object

Creates an associative array that can either be passed to the method (to tune to a channel) or parsed for metadata. The roVideoPlayer.PlayFile()
generated channel object can be based on one of the following:

Index:

["ChannelIndex"] = 0

Virtual channel number as a string in an associative array:

["VirtualChannel"] = "12.1"

Channel name as a string:

["ChannelName"] = "KCBS"

These are the entries generated in the array:

VirtualChannel
ChannelName

Note

Channels are sorted internally by virtual channel, so you could use a Channel Index script to implement standard channel up/down
behavior.

CentreFrequency
ModulationType
VideoPid
VideoCodec
AudioPid
AudioCodec
SpectralInversion
ChannelMap
FirstRfChannel
LastRfChannel

The last three entries in this array allow you to use the same as a parameter for and . The first and last RF channel roArray Scan() PlayFile()
values are set to the same value so that only one RF channel will be scanned. This kind of scan can be performed at the same time as playing
the channel because it doesn’t require retuning.

Example
c=CreateObject("roChannelManager")
aa=CreateObject("roAssociativeArray")
aa["ChannelMap"] = "QAM"
aa["FirstRfChannel"] = 10
aa["LastRfChannel"] = 15
c.Scan(aa)

cinfo = CreateObject("roAssociativeArray")
cinfo["ChannelIndex"] = 0
desc = c.CreateChannelDescriptor(cinfo)
print desc

v = CreateObject("roVideoPlayer")
v.PlayFile(desc)
c.Scan(desc)

Asynchronous API

AsyncScan(parameters As roAssociativeArray) As Boolean

Begins a channel scan on the RF input and returns the results immediately. Otherwise, the behavior and parameters of this method are identical
to . When completed or cancelled, generates an , which supports and outputs two Scan() AsyncScan() roChannelManagerEvent ifUserData
types of event:

0 – Scan Complete: Generated upon the completion of a scan. No extra data is supplied.
1 – Scan Progress: Generated upon every tune that is performed during the scan. returns the percentage complete of the GetData()
scan.

CancelScan() As Boolean

Cancels any asynchronous scans that are currently running. This method does not generate an .roChannelManagerEvent

Synchronous Example
 c = CreateObject("roChannelManager")

' Scan the channels
aa = CreateObject("roAssociativeArray")
aa["ChannelMap"] = "ATSC"
aa["FirstRfChannel"] = 12
aa["LastRfChannel"] = 50
c.Scan(aa)

' Start at the first channel
index = 0
cinfo = CreateObject("roAssociativeArray")

cinfo["ChannelIndex"] = index
desc = c.CreateChannelDescriptor(cinfo)

' Play the first channel
v = CreateObject("roVideoPlayer")
v.PlayFile(desc)

' Play the second channel
index = index + 1
cinfo["ChannelIndex"] = index
desc = c.CreateChannelDescriptor(cinfo)
v.PlayFile(desc)

Asynchronous Example
 c = CreateObject("roChannelManager")
p = CreateObject("roMessagePort")
c.SetPort(p)

' Scan the channels
aa = CreateObject("roAssociativeArray")
aa["ChannelMap"] = "ATSC"
aa["FirstRfChannel"] = 12
aa["LastRfChannel"] = 50
c.AsyncScan(aa)

loop:
 msg = Wait(2000,p)
 if msg = 0 then goto scan_complete
 goto loop

scan_complete:
' Start at the first channel
index = 0
cinfo = CreateObject("roAssociativeArray")
cinfo["ChannelIndex"] = index
desc = c.CreateChannelDescriptor(cinfo)

' Play the first channel
v = CreateObject("roVideoPlayer")
v.PlayFile(desc)

' Rescan the current channel, and update the
desc["ChannelStore"] = MERGE
c.Scan(desc)

roControlPort

ON THIS PAGE

 ifControlPort
GetVersion() As String
EnableOutput(button As Integer) As Boolean
EnableInput(button As Integer) As Boolean
EnableAlternateFunction(pin As Integer, pin_function As Integer) As Boolean
GetWholeState() As Integer
IsInputActive(button As Integer) As Boolean
SetWholeState(state As Integer) As Boolean

SetOutputState(button As Integer, level As Boolean) As Boolean
SetOutputValue(offset As Integer, bit-mask As Integer) As Boolean
SetOutputValues(values As roAssociativeArray) As Boolean
GetProperties() As roAssociativeArray
SetPulseParams(parameters As roAssociativeArray) As Boolean
SetPulse(button As Integer, bit-field As Integer) As Boolean
RemovePulse(button As Integer) As Boolean

ifMessagePort
SetPort(port As Object)

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifIdentity
GetIdentity() As Integer

BP200/BP900 Setup
BP200/BP900 LED Output

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is an improved version of . It provides support for the I/O port of the BP200 and BP900 USB button boards, as well roGpioControlPort
as the on-board I/O port and side buttons on the BrightSign player. It also supports "button-up" events. The object is used to configure output
levels on the I/O connector and monitor inputs. Typically, LEDs and buttons are attached to the I/O connector on the BrightSign player or the
BrightSign Expansion Module.

Object Creation: The object is created with a single parameter that specifies the port being used.roControlPort

CreateObject("roControlPort", port As String)

The port parameter can be one of the following:

BrightSign: Specifies the onboard GPIO connector (including the SVC (GPIO12) button).

Expander-GPIO: Specifies the DB-25 connector on the BrightSign Expansion Module. If no BrightSign Expansion module is attached,
then object creation will fail and Invalid will be returned.
Expander-<n>-GPIO: Specifies a connected to the player. Multiple USB-to-GPIO devices can be controlled using USB-to-GPIO device
separate instances: The first device corresponds to , the second to , etc.roControlPort "Expander-0-GPIO" "Expander-1-GPIO"

Expander-DIP: Specifies the eight DIP switches on the BrightSign Expansion Module. If no BrightSign Expansion module is attached,
then object creation will fail and Invalid will be returned.

Touchboard-<n>-GPIO: Retrieves events from the specified BP200/BP900 button board. Events are handled in the same manner as
events from the BrightSign port.
Touchboard-<n>-LED-SETUP: Sets various LED output options for the specified BP200/BP900 button board.

Touchboard-<n>-LED: Sets the bits for each button on the specified BP200/BP900 button board. The bits indicate whether the
associated LED should be on or off.

Note

Hot-plugging the BrightSign Expansion Module is not supported.

Note

Since multiple BP200/BP900 button boards can be connected to a player simultaneously, the <n> value specifies the port enumeration
of each board. This value corresponds to the or value returned by the method. An <raw> <fid> roDeviceInfo.GetUSBTopology()
unspecified enumeration value is synonymous with a button board with an enumeration value of 0 (e.g. Touchboard-GPIO and
Touchboard-0-GPIO are identical).

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://www.brightsign.biz/digital-signage-products/accessories/USB-C-Cables
https://docs.brightsign.biz/display/DOC/roDeviceInfo#roDeviceInfo-getusbtopology

 ifControlPort

GetVersion() As String

Returns the version number of the firmware (either the main BrightSign firmware or the BrightSign Expansion Module firmware) responsible for
the control port.

EnableOutput(button As Integer) As Boolean

Marks the specified button as an output. If an Invalid button number is passed, False will be returned. If successful, the function returns True. The
button will be driven high or low depending on the current output state of the pin.

EnableInput(button As Integer) As Boolean

Marks the specified button as an input. If an Invalid button number is passed, False will be returned. If successful, the function returns True. The
button will be tri-stated and can be driven high or low externally.

EnableAlternateFunction(pin As Integer, pin_function As Integer) As Boolean

Enables an alternate function on a GPIO pin. This method applies to the onboard GPIO connector and is currently supported on the XTx43,
XDx33, HDx23, and HO523 models.

The first argument specifies the GPIO button number (between 0 and 7). The second argument specifies the alternate function setting; the
following table outlines the possible alternate setting for each pin:

GPIO Pin Button Number Alternate Function

3 0 "serial1" (Rx)

4 1 "irin1"

5 2 "irout" (HDx23, HO523 only)

6 3 N/A

9 4 "serial0" (Rx - console port)*

10 5 "serial0" (Tx)*

11 6 "serial1" (Tx)

12 7 N/A

*Models that do not have a 3.5mm serial port (e.g. HD223, XD233) do not support serial port 0.

GetWholeState() As Integer

Returns the state of all the inputs attached to the control port as bits in an integer. Individual buttons can be checked using binary operations,
although it is normally easier to call instead.IsInputActive()

IsInputActive(button As Integer) As Boolean

Returns the state of the specified input. If the button is not configured as an input, then the result is undefined.

SetWholeState(state As Integer) As Boolean

Specifies the desired state of all outputs attached to the control port as bits in an integer. The individual buttons can be set using binary
operations, although it is normally easier to call instead. SetOutputState()

Note

The "button" numbers described below are not the same as GPIO "pin" numbers: Some pins act as power supply or ground, so they
are not included in the button numbering scheme. See the associated with your player model to view a mapping of hardware manual
buttons to pins.

Note

To revert a GPIO pin to its primary function, specify the as "gpio".pin_function

https://docs.brightsign.biz/display/DOC/Hardware

Example
port = CreateObject("roControlPort", "BrightSign")
gpio1 = 2 '2^1
gpio3 = 8 '2^3
gpio5 = 32 '2^5
gpio7 = 128 '2^7
port.SetWholeState(gpio1 + gpio2 + gpio5 + gpio7) 'turns on ports 1, 3, 5, and 7

SetOutputState(button As Integer, level As Boolean) As Boolean

Specifies the desired state of the specified output. If the button is not configured as an output, the resulting level is undefined. This method can
also be used to configure LED output behavior on BP200/B900 button boards; see the section below for more details.BP200/BP900 Setup

SetOutputValue(offset As Integer, bit-mask As Integer) As Boolean

Configures a button on a BP200/BP900 button board. This method can only be used when the object is instantiated with the roControlPort Touch
 or parameter. See the section below for more details.board-<n>-LED-SETUP Touchboard-<n>-LED BP200/900 Setup

SetOutputValues(values As roAssociativeArray) As Boolean

Configures buttons on a BP200/BP900 button board. This method can only be used when the object is instantiated with the roControlPort Touchb
 or parameter. See the section below for more details.oard-<n>-LED-SETUP Touchboard-<n>-LED BP200/900 Setup

GetProperties() As roAssociativeArray

Returns an associative array of values related to the attached BP200/BP900 button board, including hardware, header, and revision. This method
can only be used with an instantiated with the parameter.roControlPort Touchboard-<n>-GPIO

SetPulseParams(parameters As roAssociativeArray) As Boolean

Specifies a period of time, as well as the time slices within that period, for pulsing GPIO LEDs. These properties are applied to all GPIO outputs.
This method is passed an associative array with the following parameters:

milliseconds: An integer specifying the time period (in ms) for pulsing

slices: An integer specifying the number of divisions within the milliseconds time period: For example, a 500ms time period with slices:
2 is divided into two 250ms slices.

SetPulse(button As Integer, bit-field As Integer) As Boolean

Sets the off/on bit field for a particular GPIO. Use the parameter of the method to determine the number of bits in slices SetPulseParams()
the bit field. For example, specifying , and a bit field of will cause the button to turn on every other 250 milliseconds:500, slices:2 10
millisecond period.

RemovePulse(button As Integer) As Boolean

Removes the specified GPIO from the set affected by the pulse.

ifMessagePort

SetPort(port As Object)

Posts messages of type to the attached message port.and roControlUp roControlDown

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifIdentity

GetIdentity() As Integer

Returns an identity value that can be used to associate and events with this control port.roControlUp roControlDown

This example script applies timed pulses to a set of GPIOs:

' set up button 2 and 3 to flash at 2Hz (i.e. on & off twice in a second) in an alternating '
fashion.

gpioPort = CreateObject("roControlPort", "BrightSign")

gpioPort.EnableOutput(2)
gpioPort.SetOutputState(2, true)

gpioPort.EnableOutput(3)
gpioPort.SetOutputState(3, true)

' set up pulse to have two time slices of 250ms each.
gpioPort.SetPulseParams({ milliseconds: 500, slices: 2 })

' button 2 will have slice 1 on and slice 2 off.
gpioPort.SetPulse(2, &h01)

' button 3 will have the reverse of button 2.
gpioPort.SetPulse(3, &h02)

' wait for a bit.
sleep(10000)

' stop pulsing on button 2.
gpioPort.RemovePulse(2)

This example script enables various alternate functions on the GPIO:

c = CreateObject("roControlPort", "BrightSign")

'Enable serial port 1 on the GPIO.

c.EnableAlternateFunction(0, "serial1")
c.EnableAlternateFunction(6, "serial1")

s1 = CreateObject("roSerialPort", 1, 115200)
s1.SendLine("This is serial port 1")

mp = CreateObject("roMessagePort")
s1.SetLineEventPort(mp)
? wait(10000, mp)

'Switch serial port 0 from the 3.5mm serial port to the GPIO.
'[Note: it is advised use telnet/ssh or a script when testing this]

Note

The interface has been deprecated. We recommend using the interface instead.ifIdentity ifUserData

c.EnableAlternateFunction(4, "serial0")
c.EnableAlternateFunction(5, "serial0")

s = CreateObject("roSerialPort", 0, 115200)
s.SendLine("Hello on the console?")

mp = CreateObject("roMessagePort")
s.SetLineEventPort(mp)
? wait(10000, mp)

'Restore normal operation on serial port 0.

c.EnableAlternateFunction(4, "gpio")
c.EnableAlternateFunction(5, "gpio")

'Enable IR input on the GPIO.

c = CreateObject("roControlPort", "brightsign")
? c.EnableAlternateFunction(1, "irin1")

nexus_encodings = ["NEC", "NEC32"]
ir_gpio = CreateObject("roIRReceiver", { source: "GPIO", encodings: nexus_encodings })

mp = CreateObject("roMessagePort")
ir_gpio.SetPort(mp)

m = wait(10000, mp)

'Enable IR output on the GPIO (HDx23, HO523 only--the XTx43/XDx33 models have a dedicated 3.5
mm IR socket)

c.EnableAlternateFunction(2, "irout")

ir = CreateObject("roIRTransmitter", { destination: "GPIO"})
ir.Send("NEC32", &H12345)

BP200/BP900 Setup

To send a configuration to the BP200/BP900 button board, instantiate with the parameter and call roControlPort Touchboard-<n>-LED-SETUP
the method. This method accepts two integers: the first integer specifies one of three command types (offsets); the second SetOuputValue()
integer is a bit field consisting of 32 bits.

Offset 0: Configures the button board using a bit field that is split into four bytes of eight bits each. Each byte is a separate part of the
configuration. In the script, these bytes need to be listed from right to left in hex value (i.e. Byte 1 + Byte 2 + Byte 3 + Byte 4).

Byte 1: Specifies the configuration type for the button board. Currently, the only configuration type is for LED output, which is
specified with the value &hA0.
Byte 2: The button number(s) that will be configured. Buttons are numbered beginning from 1. The value is set to 0 (&h00) if this
command is not required.
Byte 3: The LED bit-field configuration. This value specifies how many on/off bits should be used (up to 32 bits) when SetOutpu

 is called on a instance (see the section below for details). Set tValue() Touchboard-<n>-LED BP200/BP900 LED Output
the value to 0 (&h00) if this command is not required (the bit field will be set to eight bits by default).
Byte 4: This value is currently always set to 0 (&h00).

Offset 1: Disables buttons on the button board according to values in the bit field. Each button is disabled individually by setting bits 0-
10: For example, passing the hex value &h00000008 will disable button 4 only.
Offset 2: Disables LEDs on the button board according to values in the bit field. Each LED is disabled individually by setting bits 0-10:
For example, passing the hex value &h00000080 will disable the LED on button 8 only.

Note

Disabling a button LED will not automatically disable the button itself (and vice-versa). To disable both the button and the LED, make
separate SetOutputValue() calls for Offset 1 and Offset 2.

BP200/BP900 LED Output

To control the behavior of individual button LEDs, instantiate with the parameter, then pass per-LED bit roControlPort Touchboard-<n>-LED
fields to the method. This method accepts two integers: the first integer specifies the button number (0-11), while the SetOutputValue()
second integer uses a bit field to specify the on/off behavior of the button LED. The size of the bit field (up to 32 bits) is determined with the Offset
0 – Byte 3 value described in the section above.

Each bit specifies the on/off behavior of a single cycle, and the BP200/BP900 button boards run at approximately 11Hz. For example, if you want
an LED to cycle on every other second, you would set the Offset 0 – Byte 3 value to &h16 (22 bits) and the bit field itself to &h3FF800
(0000000000011111111111).

This example script sets a BP900 to “twinkle” by turning off each button LED at a different point in the cycle:

led=CreateObject("roControlPort", "TouchBoard-0-LED")
led_setup=CreateObject("roControlPort", "TouchBoard-0-LED-SETUP")
led_setup.SetOutputValue(0, &h000B00A0)
led.SetOutputValue(0, &h07fe)
led.SetOutputValue(1, &h07fd)
led.SetOutputValue(2, &h07fb)
led.SetOutputValue(3, &h07f7)
led.SetOutputValue(4, &h07ef)
led.SetOutputValue(5, &h07df)
led.SetOutputValue(6, &h07bf)
led.SetOutputValue(7, &h077f)
led.SetOutputValue(8, &h06ff)
led.SetOutputValue(9, &h05ff)
led.SetOutputValue(10, &h03ff)

roControlUp, roControlDown

ON THIS PAGE

ifInt
GetInt() As Integer
SetInt(value As Integer) As Void

ifUserData
SetUserData(user_data As Object) As Void
GetUserData() As Object

ifSourceIdentity
GetSourceIdentity() As Integer

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

These objects are posted by an instance to the configured message port when inputs change state. An event is roControlPort roControlDown
posted when the input level goes from high to low. An event is posted when the input level goes from low to high.roControlUp

ifInt

GetInt() As Integer

Retrieves the pin number associated with the event.

SetInt(value As Integer) As Void

Sets the value of the event.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifUserData

SetUserData(user_data As Object) As Void

Sets the user data.

GetUserData() As Object

Returns the user data that has previously been set via (on either the event or source object). It will return Invalid if no data has SetUserData()
been set.

ifSourceIdentity

GetSourceIdentity() As Integer

Retrieves the identity value that can be used to associate events with the source instance.roControlPort

roGpioButton

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object contains the input ID from instances:roGpioControlPort

ifInt

GetInt() As Integer

Returns the input ID of the event.

SetInt(value As Integer) As Void

Sets the input ID of the event.

roGpioControlPort

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

ON THIS PAGE

ifMessagePort
SetPort(obj As Object) As Void

ifGpioControlPort
IsInputActive(input_id As Integer) As Boolean
GetWholeState() As Integer
SetOutputState(output_id As Integer, onState As Boolean) As Void

Note

The interface has been deprecated. We recommend using the interface instead.ifSourceIdentity ifUserData

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

SetWholeState(on_state As Integer) As Void
EnableInput(input_id As Integer) As Boolean
EnableOutput(output_id As Integer) As Boolean

This object is used to control and wait for events on the BrightSign generic GPIO control port. Typically, LEDs or buttons are connected to the
GPIO port. Turning on a GPIO output changes the voltage on the GPIO port to 3.3V. Turning off a GPIO output changes the voltage on the GPIO
port to 0V.

The GPIO ports are bidirectional and must be programmed as either inputs or outputs. The IDs range from 0–7. The method SetWholeState()
will overwrite any prior output settings. The takes an output ID (1, 2, or 6, for example). The method SetOutputState() SetWholeState()
takes a mask (for example, will set IDs 1 and 2).SetWholeState(SetWholeState(2^1 + 2^2)

ifMessagePort

SetPort(obj As Object) As Void

ifGpioControlPort

IsInputActive(input_id As Integer) As Boolean

GetWholeState() As Integer

SetOutputState(output_id As Integer, onState As Boolean) As Void

SetWholeState(on_state As Integer) As Void

EnableInput(input_id As Integer) As Boolean

EnableOutput(output_id As Integer) As Boolean

roIRReceiver

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifMessagePort
SetPort(port As roMessagePort)

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object supports receiving arbitrary Infrared remote control codes using the NEC and RC5 protocols.

Object Creation: The object is created with an associative array.roIRReceiver

Important

New scripts should use instead of .roControlPort roGpioControlPort

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

CreateObject("roIRReceiver", config As roAssociativeArray)

The associative array can contain the following parameters:

source: A string value indicating the source of the input.

"IR-in": The 3.5mm IR input/output connector (available on 4Kx42 and XDx32 models)
"GPIO": Pin 1 of the GPIO connector
"Iguana": The IR transceiver. This source can support both NEC and RC5 encodings simultaneously.Iguanaworks

encodings: An array indicating the required encodings.

"NEC"
"RC5" (supported on the Iguanaworks IR transceiver only)

NEC codes are expressed in 24 bits:

Bits 0-7: Button code
Bits 8-23: Manufacturer code

The object can generate the following events:roIRReceiver

roIRDownEvent: Generates when a button is pressed.
roIRRepeatEvent: Generates when a button repeats.
roIRUpEvent (Iguanaworks IR transceiver only): Generates when a button is released.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifMessagePort

SetPort(port As roMessagePort)

Specifies the port that will receive events generated by the instance.roIRReceiver

roIRDownEvent, roIRRepeatEvent, roIRUpEvent

ON THIS PAGE

ifInt
GetCode() As Integer
SetCode(a As Integer)

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifReceivedEvent
GetEncoding() As String

Note

If the manufacturer code is zero, then the code is considered to be intended for the Roku SoundBridge remote control.

http://iguanaworks.net/

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

An IR event object is generated when an IR button input (button press, button repeat, button release) is received by the object. Use roIRReceiver
these objects to retrieve the message body of the IR input.

ifInt

GetCode() As Integer

Returns the IR code received by the instance.roIRReceiver

SetCode(a As Integer)

Overrides the IR code received by the instance, replacing it with the specified binary code. roIRReceiver

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned by .GetUserData()

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set. SetUserData()

ifReceivedEvent

GetEncoding() As String

Returns the encodings setting of the instance. This setting can be one of the following strings:roIRReceiver

"NEC"
"RC5" (supported on the Iguanaworks IR transceiver only)

roIRTransmitter

ON THIS PAGE

ifMessagePort
SetPort(message_port_object As Object) As Void

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifIRTransmitter
GetFailureReason() As String
Send(protocol As String, code As Dynamic) As Boolean
AsyncSend(protocol As String, code As Dynamic) As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2

Note

The object is generated with the Iguanaworks IR transceiver only.roIRUpEvent

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2

Version 6.1
Previous Versions

This object supports sending arbitrary remote control Infrared remote control codes using the NEC, RC5, or PHC (Pronto Hex Controls)
protocols.

Object Creation: The is created with an associate array.roIRTransmitter

CreateObject("roIRTransmitter", config as roAssociativeArray)

The associative array can contain the following parameter:

destination: A string value indicating the connector that will be used to output the signal.

"IR-out": The 3.5mm IR output connector (available on XDx30 models) or 3.5mm IR input/output connector (available on 4Kx42
and XDx32 models)
"Iguana": The IR transceiverIguanaworks

ifMessagePort

SetPort(message_port_object As Object) As Void

Posts event messages to the attached message port.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifIRTransmitter

GetFailureReason() As String

Send(protocol As String, code As Dynamic) As Boolean

Sends the specified code using the output destination set during object creation. The system currently supports two IR transmission protocols:
"NEC" and "PHC" (). This method returns True if the code was successfully transmitted, but there is no way to determine from Pronto Hex Code
BrightScript if the controlled device actually received it.

AsyncSend(protocol As String, code As Dynamic) As Boolean

Sends the specified code and generates an object upon completion. The system currently supports two IR roIRTransmitCompleteEvent
transmission protocols: "NEC" and "PHC" (). This method is only supported using the IR-out destination.Pronto Hex Code

roIRTransmitCompleteEvent

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Note

System software will not prevent you from generating both an instance set to "IR-out" and an roIRReceiver instance roIRTransmitter
set to "IR-in" (i.e. configuring the 3.5mm IR connector for input and output at the same time). However, input/output performance will
not be reliable.

https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
http://iguanaworks.net/
https://docs.brightsign.biz/display/DOC/roIRRemote#roIRRemote-pronto_hex_format
https://docs.brightsign.biz/display/DOC/roIRRemote#roIRRemote-pronto_hex_format

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This event object is generated by the method. It does not return any information other than user data.roIRTransmitter.ASyncSend()

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned by .GetUserData()

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

roIRRemote

ON THIS PAGE

ifMessagePort
SetPort(port As roMessagePort)

ifIRRemote
Send(protocol as String, code as Dynamic) As Boolean

Pronto Hex Format

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object supports receiving and transmitting arbitrary Infrared remote control codes using the NEC protocol. You can also use this object to
send PHC (Pronto Hex Code) commands. The best way to determine the required send values is to capture the codes received by roIRRemote
when the remote buttons of the device are pressed and then send the same codes.

NEC codes are expressed in 24 bits:

Bits 0-7: Button code
Bits 8-23: Manufacturer code

Important

The object cannot be used to receive input over the 3.5mm IR port on the 4Kx42 and XDx32 series—use the roIRRemote roIRReceiver
object instead.

Note

If the manufacturer code is zero, then the code is considered to be intended for the Roku SoundBridge remote control.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type to the attached message port.roIRRemotePress

ifIRRemote

Send(protocol as String, code as Dynamic) As Boolean

Sends the specified code using the IR blaster. The system currently supports two IR transmission protocols: "NEC" and "PHC" (Pronto Hex
Code). This method returns True if the code was successfully transmitted, but there is no way to determine from BrightScript if the controlled
device actually received it.

Pronto Hex Format

Raw captures of Pronto Hex commands will likely not work with the inbuilt IR blaster, though they should work with IR transceivers. Iguanaworks
This is a result of the trailing periods, which are too long to be ecoded properly. Changing the periods to all zeros ("0000") will fix this issue.off off

The following example sends an "ON" command to a Panasonic television using a single string of Pronto Hex Code. You can also provide Pronto
Hex Code as an of hex values, which results in less work for the script engine.roArray

ir = CreateObject("roIRRemote")

pronto_hex_Panasonic_on_str = " 0000 0071 0000 0032 0080 003F 0010 0010 0010 0030 0010 0010
0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010
0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010
0010 0010 0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010
0010 0010 0010 0010 0010 0010 0010 0030 0010 0030 0010 0030 0010 0030 0010 0030 0010 0010
0010 0010 0010 0010 0010 0030 0010 0030 0010 0030 0010 0030 0010 0030 0010 0010 0010 0030
0010 0000"

ir.Send("PHC", pronto_hex_lg_on_str)

roIRRemotePress

ON THIS PAGE

ifInt
GetInt() As Integer
SetInt(value As Integer) As Void

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

Messages of the type are generated upon key presses from a Roku Soundbridge remote.roIRRemotePress

ifInt

GetInt() As Integer

Returns the event ID.

SetInt(value As Integer) As Void

Sets the value of the event.

http://iguanaworks.net/
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

For the Roku SoundBridge remote control, the Integer returned can have one of the following values:

Integer Command Integer Command

0 West 8 Search

1 East 9 Play

2 North 10 Next

3 South 11 Previous

4 Select 12 Pause

5 Exit 13 Add

6 Power 14 Shuffle

7 Menu 15 Repeat

8 Search 16 Volume up

9 Play 17 Volume down

10 Next 18 Brightness

roKeyboard

ON THIS PAGE

ifMessagePort
SetPort(port As roMessagePort)

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifKeyboardConfig
IsPresent() As Boolean
SetLayout(layout As String) As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is used to wait for events from a USB keyboard. It can also be used to configure the localization of the keyboard.

Object Creation: The object is created with no parameters.roKeyboard

CreateObject("roKeyboard")

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type to the attached message port.roKeyboardPress

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifKeyboardConfig

IsPresent() As Boolean

Returns True if a USB keyboard is connected to the player. This method counts a connected device as a keyboard if it reports having the
following keys: "A", "Z", "0", "9", ".", and Enter.

SetLayout(layout As String) As Boolean

Specifies the localized layout for the attached USB keyboard. This setting takes effect immediately and persists in the registry after a reboot. The
following table lists valid keymap parameters (players are set to "us" by default):

af Afghanistan es Spain kh Cambodia pk Pakistan

al Albania et Ethiopia kr Korea, Republic of pl Poland

am Armenia fi Finland kz Kazakhstan pt Portugal

at Austria fo Faroe Islands la Laos ro Romania

az Azerbaijan fr France lk Sri Lanka rs Serbia

ba Bosnia and Herzegovina gb United Kingdom lt Lithuania ru Russia

bd Bangladesh ge Georgia lv Latvia se Sweden

be Belgium gh Ghana ma Morocco si Slovenia

bg Bulgaria gn Guinea md Moldova sk Slovakia

br Brazil gr Greece me Montenegro sn Senegal

bt Bhutan hr Croatia mk Macedonia sy Syria

bw Botswana hu Hungary ml Mali th Thailand

by Belarus ie Ireland mm Myanmar tj Tajikistan

ca Canada il Israel mn Mongolia tm Turkmenistan

cd Congo (DRC) in India mt Macao tr Turkey

ch Switzerland iq Iraq mv Maldives tw Taiwan

cm Cameroon ir Iran ng Nigeria tz Tanzania

cn China is Iceland nl Netherlands ua Ukraine

cz Czech Republic it Italy no Norway us* United States

de Germany jp Japan np Nepal uz Uzbekistan

dk Denmark ke Kenya pc Pitcairn vn Vietnam

ee Estonia kg Kyrgyzstan ph Philippines za South Africa

*The default setting.

roKeyboardPress

ON THIS PAGE

ifInt
GetInt() As Integer
SetInt(a As Integer)

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

This is an event object resulting from the user pressing a key on a USB keyboard. The returned integer value is equivalent to the ASCII code of
the key that was pressed.

ifInt

GetInt() As Integer

Returns the ASCII value of the key press.

SetInt(a As Integer)

Sets the value returned by the method.GetInt()

The returned can have one of the following values:roInt32

Letter Keys Number Keys Function Keys Misc Keys Special Keys

A - 97 R - 114 0 - 48 F1 - 32826 Del - 127 "-" 45 : 58

B - 98 S - 115 1 - 49 F2 - 32827 Backspace - 8 "=" 61 " 34

C - 99 T - 116 2 - 50 F3 - 32828 Tab - 9 \ 92 < 60

D - 100 U - 117 3 - 51 F4 - 32829 Enter - 13 ` 96 > 62

E - 101 V - 118 4 - 52 F5 - 32830 Print Scrn - 32838 [91 ? 63

F - 102 W - 119 5 - 53 F6 - 32831 Scrl Lock - 32839] 93 ! 33

G - 103 X - 120 6 - 54 F7 - 32832 Pause/Brk - 32840 ; 59 @ 64

H - 104 Y - 121 7 - 55 F8 - 32833 INS - 32841 " ' " 39 # 35

I - 105 Z - 122 8 - 56 F9 - 32834 Home - 32842 , 44 $ 36

J - 106 9 - 57 F11 - 32836 Page Up - 32843 . 46 % 37

K - 107 F12 - 32837 Page Down - 32846 / 47 ^ 94

L - 108 End - 32845 _ 95 & 38

M - 109 Caps - 32811 "+" 43 * 42

N - 110 Left Arrow - 32848 | 124 (40

O - 111 Right Arrow - 32847 ~ 126) 41

P - 112 Up Arrow - 32850 { 123

Q - 113 Down Arrow - 32849 } 125

roSequenceMatcher

ON THIS PAGE

ifMessagePort
SetPort(port As roMessagePort)

ifSequenceMatcher
SetPort(a As Object)
Add(pattern As Object, user_data As Object) As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript

Previous Versions

This object is used to send events when the specified byte sequence patterns are matched. Once a pattern has been roSequenceMatchEvent
matched and the event has been posted, all contributing bytes are discarded. As a result, if one pattern is a prefix of another pattern, then the
second, longer pattern will never be matched by the object.

This object provides both a standard interface and an overloaded interface for sending events to a message port.

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of type to the attached message port.roSequenceMatchEvent

ifSequenceMatcher

SetPort(a As Object)

Specifies the message port where objects will be posted.roSequenceMatchEvent

Add(pattern As Object, user_data As Object) As Boolean

Adds a pattern to be matched by the object instance. The pattern should be specified as an object that is convertible to a roSequenceMatcher
byte sequence (e.g. ,). For the user data, pass the object that should be returned if the specified pattern is matched.roByteArray roString

Example
Function FromHex(hex as String) as Object
 bytes = CreateObject("roByteArray")
 bytes.FromHexString(hex)
 return bytes
End Function

Sub Main()
 serial = CreateObject("roSerialPort", 1, 115200)
 mp = CreateObject("roMessagePort")

 button1_seq = FromHex("080a01040001e000")
 button2_seq = FromHex("080e01040001e000")

 matcher = CreateObject("roSequenceMatcher")
 matcher.SetMessagePort(mp)
 matcher.Add(button1_seq, { name: "button1" })
 matcher.Add(button2_seq, { name: "button2" })
 matcher.Add("flibbet", { name: "flibbet" })
 matcher.Add("flobbet", { name: "flobbet" })

 if not serial.SetMatcher(matcher) then
 stop
 end if

 finished = false
 while not finished
 ev = mp.WaitMessage(10000)
 if ev = invalid then
 finished = true
 else if type(ev) = "roSequenceMatchEvent" then
 print "Got button: "; ev.GetUserData().name
 else
 print "Unexpected event: "; type(ev)
 end if
 end while
End Sub

http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

roSequenceMatchEvent

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is generated whenever matches a specified byte sequence pattern. roSequenceMatcher

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned by .GetUserData()

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

roSerialPort

ON THIS PAGE

ifStreamSend
SetSendEol(eol_sequence As String) As Void
SendByte(byte As Integer) As Void
SendLine(string As String) As Void
SendBlock(a As Dynamic) As Void
Flush()

ifStreamReceive
SetLineEventPort(port As Object) As Void
SetByteEventPort(port As Object) As Void
SetReceiveEol(eol_sequence As String)

ifSerialControl
SetBaudRate(baud_rate As Integer) As Boolean
SetMode(mode As String) As Boolean
SetEcho(enable As Boolean) As Boolean
SetEol(a As String)
SetFlowControl(enalbe As Boolean) As Boolean
SetInverted(inverted As Boolean) As Boolean
SendBreak(duration_in_ms As Integer) as Boolean

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript

Previous Versions

This object controls the serial port on the player, allowing you to transmit and receive serial data.

Object Creation: The object is created with two parameters.roSerialPort

CreateObject("roSerialPort", port As Dynamic, baud_rate As Integer)

port As Integer: The port enumeration of the serial device:

Most standard serial devices enumerate on port 0.
To communicate with the serial port of an OPS display (i.e. with the HO523), use port 1.
To communicate with a USB-serial device (such as a GPS receiver), use port 2.

port As String: If multiple USB-serial devices are connected to the player, the device can be specified with a raw value ("RAW:
) or a friendly name (). These values correspond to the and values <raw_enumeration>" "USB:<friendly_name>" <raw> <fid>

returned by the method roDeviceInfo.GetUSBTopology() .
baud_rate As Integer: The baud rate for serial communication. The serial port supports the following baud rates: 50, 75, 110, 134,
150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400.

Example
serial1 = CreateObject("roSerialPort", 0, 115200)
serial2 = CreateObject("roSerialPort", "RAW:4-1:1.0", 57600)

The object sends the following event types:roSerialPort

roStreamLineEvent: The line event is generated whenever the end of line string set using is found and contains a string for the SetEol
whole line. This object implements the and interfaces.ifString ifUserData
roStreamByteEvent: The byte event is generated on every byte received. This object implements the and interfaces.ifInt ifUserData

ifStreamSend

SetSendEol(eol_sequence As String) As Void

Sets the EOL sequence when writing to the stream. The default value is CR (ASCII value 13). If you need to set this value to a non-printing
character, use the .chr() global function

SendByte(byte As Integer) As Void

Writes the specified byte to the stream.

SendLine(string As String) As Void

Writes the specified characters to the stream followed by the current EOL sequence.

SendBlock(a As Dynamic) As Void

Writes the specified characters to the stream. This method can support either a string or an . If the block is a string, any null bytes will roByteArray
terminate the block.

Flush()

ifStreamReceive

SetLineEventPort(port As Object) As Void

SetByteEventPort(port As Object) As Void

SetReceiveEol(eol_sequence As String)

http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
http://docs.brightsign.biz/display/DOC/roDeviceInfo#roDeviceInfo-getusbtopology

Sets the EOL sequence to detect when receiving the stream. The default value is CR (ASCII value 13). If you need to set this value to a non-
printing character, use the .chr() global function

SetMatcher(matcher As Object) As Boolean

Instructs the stream to use the specified matcher. This method returns True if successful. Pass Invalid to this method to stop using the specified
matcher.

ifSerialControl

SetBaudRate(baud_rate As Integer) As Boolean

Sets the baud rate of the device. The supported baud rates are as follows: 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600,
19200, 38400, 57600, 115200, 230400.

SetMode(mode As String) As Boolean

Sets the serial mode in "8N1" syntax. The first character is the number of data bits. It can be either 5, 6, 7, or 8. The second number is the parity.
It can be "N"one, "O"dd, or "E"ven. The third is the number of stop bits. It can be 1 or 2.

SetEcho(enable As Boolean) As Boolean

Enables or disables serial echo. It returns True on success and False on failure.

SetEol(a As String)

SetFlowControl(enalbe As Boolean) As Boolean

Enables or disable RTS/CTS handshaking over the serial port. This feature is currently only available on 4Kx42, XDx32, and HDx22 models.

SetInverted(inverted As Boolean) As Boolean

Inverts the TX/RX signal levels on the serial port. This allows the player to communicate with devices that use -12V to 12V signaling. Inversion is
supported on the DE9 and USB ports only. Passing True to the method enables inversion, whereas passing False disables it.

SendBreak(duration_in_ms As Integer) as Boolean

Sends a serial break or sets the serial break condition. This method returns True upon success and False upon failure.

duration_in_ms = -1: Sends a continuous break.

duration_in_ms = 0: Clears the break state.

duration_in_ms >= 100: Sets the break condition for the specified period of milliseconds (note that this integer is only accurate to
the tenth of a second).

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

This example script waits for a serial event and echoes the input received on the serial port to the shell:

serial = CreateObject("roSerialPort", 0, 9600)
p = CreateObject("roMessagePort")
serial.SetLineEventPort(p)

serial_only:
msg = Wait(0,p) ' Wait forever for a message.
if(type(msg) <> "roStreamLineEvent") goto serial_only 'Accept serial messages only.
serial.SendLine(msg) ' Echo the message back to serial.

System Objects

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This section describes objects that interact with system software.

roDeviceCustomization
roDeviceInfo
roResourceManager
roSystemLog

roDeviceCustomization

ON THIS PAGE

ifFailureReason
GetFailureReason() As String

ifDeviceCustomization
WriteSplashScreen(filename As String) As Boolean
FactoryReset(confirm As String) As Boolean
EncryptStorage(device As String, params As roAssociativeArray) As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object provides miscellaneous device configuration and customization methods.

ifFailureReason

GetFailureReason() As String

Returns helpful information if one of the methods fail.ifDeviceCustomization

ifDeviceCustomization

WriteSplashScreen(filename As String) As Boolean

Removes the default splash screen (or a previously set splash screen) and replaces it with the specified image file. The image file must use a sup
. This method returns True upon success and False upon failure.ported format

FactoryReset(confirm As String) As Boolean

Applies a factory reset to the player. This method must be passed the string "confirm" to work; otherwise, it will return False and do nothing. If
successful, this method will reboot without a return value. The following steps will be carried out during a factory reset:

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
http://support.brightsign.biz/entries/143089-What-image-formats-do-BrightSign-players-support-
http://support.brightsign.biz/entries/143089-What-image-formats-do-BrightSign-players-support-

1. All files are wiped from the drive (including custom splash screens and autorun scripts).BOOT:

2. All values are wiped from the registry.

3. The RTC is reset (if the player has an RTC).

4. The drive is wiped.FLASH:

EncryptStorage(device As String, params As roAssociativeArray) As Boolean

Encrypts the contents of a storage device using an encryption key stored in the private section of the player registry. This prevents other devices
from reading the names or contents of files on the storage device (though file metadata will still be readable). The storage device can still be
mounted on other devices, which can list, delete, and copy files (even though they cannot read them).

Use the parameter to specify which storage drive to encrypt (see for a list of valid drive names). Encryption parameters are passed device here
as an associative array, which can contain the following:

method As String:(Required) The encryption method, which can be one of the following:

"none": Encryption is disabled and any encryption keys for the storage device are deleted from the registry.

"passphrase": The storage device is encrypted using an un-obfuscated passphrase.

"obfuscated_passphrase": The storage device is encrypted using an obfuscated passphrase. Contact support@brightsign.
 to learn more about generating a key for obfuscation and storing it on the player. biz

"brightsign_key": The storage device is encrypted using an encryption key that is common to all BrightSign players, but is
not shared with outside parties.
"generate_key": The storage device is encrypted using an encryption key that is generated on-demand using a secure
random generator. The private registry of the player contains the only copy of the key; if the value in the registry is erased or
becomes corrupted, there will be no way to recover data from that storage device.

passphrase As String: The passphrase for encrypting the storage device. This parameter must be included if the method is
specified as or . "passphrase" "obfuscated_passphrase"

format As Boolean: Setting this parameter to will cause the specified storage device to be reformatted–all existing files will be true
deleted (but are not guaranteed to be securely erased) before the device is encrypted; however, if the device cannot be reformatted, the
operation will fail. If this parameter is set to , the storage device will be mounted as if it has been previously encrypted using the false
supplied key. If the storage device hasn't been previously encrypted, it will be encrypted while leaving any preexisting files unencrypted.
If the storage device has been encrypted using a different key, the operation will fail.

roDeviceInfo

ON THIS PAGE

ifDeviceInfo
GetModel() As String
GetVersion() As String
GetVersionNumber() As Integer
FirmwareIsAtLeast(version As String) As Boolean
GetBootVersion() As String
GetBootVersionNumber() As Integer
BootFirmwareIsAtLeast(version As String) As Boolean
GetDeviceUptime() As Integer
GetDeviceLifetime() As Integer
GetLoadStatistics(parameters As roAssociativeArray) As String
GetUSBTopology(return As roAssociativeArray) As Dynamic
GetDeviceUniqueId() As String
GetFamily() As String

Important

The private registry does not distinguish between different physical volumes of the same drive. For example, if you
encrypt two SD cards, the key for the first SD card will be overwritten when the second SD card is encrypted; in the
case of a randomly generated key, the data from the first SD card will be irretrievable.

Note

If the parameter is not specified, the storage device will be mounted as if it has been previously encrypted using the format
supplied key. If the storage device hasn't been previously encrypted, the operation will fail.

https://docs.brightsign.biz/display/DOC/roStorageInfo#roStorageInfo-drive_specifications
mailto:support@brightsign.biz
mailto:support@brightsign.biz

HasFeature(feature As String) As Boolean

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object provides information about the device hardware, firmware, and features.

ifDeviceInfo

GetModel() As String

Returns the model name for the BrightSign device running the script as a string (for example, "HD1020" or "XD230").

GetVersion() As String

Returns the version number of BrightSign firmware running on the device (for example, "4.0.13").

GetVersionNumber() As Integer

Returns the three most significant version numbers of the BrightSign firmware running on the device in comparable numeric form: major*65536
+ minor*256 + build

FirmwareIsAtLeast(version As String) As Boolean

Returns True if the BrightSign firmware version on the device is less than or equal to the version number represented by the passed string (e.g.
"4.0.13").

GetBootVersion() As String

Returns the version number of the BrightSign boot firmware, also known as "safe mode", as a string (for example, "1.0.4").

GetBootVersionNumber() As Integer

Returns the three most significant version numbers of the BrightSign boot firmware, also known as "safe mode," in comparable numeric form: maj
or*65536 + minor*256 + build.

BootFirmwareIsAtLeast(version As String) As Boolean

Returns True if the BrightSign boot firmware version on the device is less than or equal to the version number represented by the passed string
(e.g. "4.4.22").

GetDeviceUptime() As Integer

Returns the number of seconds that the device has been running since the last power cycle or reboot.

GetDeviceLifetime() As Integer

Important

The return value for the methodGetVersionNumber() does not include any additional version numbers after the first three: For
example, firmware version 4.0.13.4 will be returned as 262157 (as if it were "4.0.13"). For this reason, we recommend using the GetVe

 or methods to determine the current firmware version.rsion() FirmwareIsAtLeast()

Important

The return value for the method does not include any additional version numbers after the first three: For GetBootVersionNumber()
example, firmware version 1.0.4.1 will be returned as 65540 (as if it were "1.0.4"). For this reason, we recommend using the GetBootV

 or methods to determine the current boot firmware version.ersion() BootFirmwareIsAtLeast()

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

GetLoadStatistics(parameters As roAssociativeArray) As String

Provides current performance information related to the Linux kernel. This method accepts an associative array with a single key/value pair
formatted as ; it will then return a string containing information associated with that parameter. The following are recognized item:<parameter>
parameters:

"loadavg": Provides information about system performance. The first three columns measure CPU and I/O utilization over the past 1, 5,
and 10 minutes, respectively. The fourth column displays the number of currently running processes and the total number of processes.
The last column displays the ID of the most recently used process.
"meminfo": Displays physical and swap memory usage.
"slabinfo": Provides information about memory usage at the slab level.
"stat": Provides overall statistics about the system (e.g. the number of page faults since the system booted).
"vmstat": Displays detailed virtual memory statistics from the kernel.
"zoneinfo": Provides overall statistics about the system, broken down by system Node.
"interrupts": Displays which interrupts are in use and how many of each type there have been.
"version": Provides the kernel version.

Example
stat = CreateObject("roDeviceInfo")
print stat.GetLoadStatistics({item:"interrupts"})

GetUSBTopology(return As roAssociativeArray) As Dynamic

Returns the USB topology of the player, including the port enumeration, PID, and VID of each USB device. Use this method to determine whether
certain USB devices are connected to certain ports. The passed associative array determines the return value:

{}: Returns the USB topology as a string list.

{xml: true}: Returns the USB topology as an XML-formatted string.

{array: true}: Returns an array of associative arrays. Each associative array contains information about a single USB port.

String list
BrightScript Debugger> di = CreateObject("roDeviceInfo")
BrightScript Debugger> topo = di.GetUSBTopology({})
BrightScript Debugger> print topo
>|usb1,4,1d6b,0002||usb2,4,1d6b,0002||usb3,4,1d6b,0002||usb4,4,1d6b,0002||usb5,4,1d6b,
0001||usb6,4,1d6b,0001||usb7,4,1d6b,0001||usb8,4,1d6b,0001||5-1:1.0,1,084f,ee03|<

XML string
BrightScript Debugger> di = CreateObject("roDeviceInfo")
BrightScript Debugger> topo = di.GetUSBTopology({xml: true})
BrightScript Debugger> print topo
<topology>
 <device>
 <raw>8-1:1.0</raw>
 <fid>C.0</fid>
 <category>HID</category>
 <vid>084f</vid>
 <pid>ee03</pid>
 <type>BP900</type>
 </device>
 <devices raw="2-1.4" category="HUB" vid="05e3" pid="0610" >
 <device>
 <raw>2-1.4.1:1.0</raw>
 <fid>A/4.0</fid>
 <category>AUDIO</category>
 <vid>05a7</vid>
 <pid>40fa</pid>
 </device>

 <device>
 <raw>2-1.4.1:1.2</raw>
 <fid>A/4.2</fid>
 <category>HID</category>
 <vid>05a7</vid>
 <pid>40fa</pid>
 </device>
...

Array
BrightScript Debugger> di = CreateObject("roDeviceInfo")
BrightScript Debugger> topo = di.GetUSBTopology({array: true})
BrightScript Debugger> print topo[0]
vid: 05a7
pid: 40fa
fid: A.0
category: AUDIO
raw: 2-1.4.1:1.0

Ports that have USB devices connected to them will include a (Friendly ID) value (only array and XML-string returns include this value). Use fid
the to determine which physical port on the player the USB device is connected to. The following table matches values to the ports on fid fid
different model lines:

Model Family Friendly ID (fid) Location

LS423 A Front (USB-C)

HDx23 A Front (USB-A)

HS123 A N/A (M.2 connector)

HO523 A Upper Front (USB-A)

 B Lower Front (USB-A)

 C Back (JAE TX-25)

XDx33 A Front (USB-C)

B Back (USB-A)

XTx43 A Back (USB-A)

B Front (USB-C)

A value of (e.g. "B.0") indicates that the USB device is directly connected to the player, while a value of fid <port>.<int> <port>/<int>.
 (e.g. "A/4.2") indicates a device connected through a USB hub. The last integer specifies the endpoint: For example, if a USB device <int>

presents as both an HID and audio device, they will be listed as separate devices with different endpoint numbers. Also note that there can be
more than one layer of port numbers if multiple USB hubs are connected together (e.g. "A/4.0.0").

GetDeviceUniqueId() As String

Returns an identifier that, if not an empty string, is unique to the unit running the script.

GetFamily() As String

Returns a single string that indicates the family to which the device belongs. A device family is a set of models that are all capable of running the
same firmware.

HasFeature(feature As String) As Boolean

Returns True if the player feature, which is passed as a case-insensitive string parameter, is present on the current device and firmware. The
possible features that can be queried from the script are listed below:

"5v serial": A 5V serial port

"audio1": The first audio output

"audio2": A second audio output

"audio3": A third audio output

"brightscript1": BrightScript Version 1

"brightscript2": BrightScript Version 2

"component video": A component video output

"ethernet": An Ethernet interface

"gpio connector": A DA15 or Pheonix-style GPIO port

"hdmi": An HDMI output

"hdmi input": An HDMI input

"hevc_decode": An H.265 video decoder

"media_decryption": The ability to decrypt AES-encrypted media, including video, image, and audio files.

"nand storage": NAND storage for the boot loader and firmware

"networking": Any form of networking capability. A False return may indicate that no network is currently available.

"reset button": A reset button

"registry": On-board persistent storage

"rtc": A real-time clock (RTC)

"sd": SD- or SDHC-compatible storage

"sdhc": SDHC-compatible storage only

"serial port 0": The first serial port

"serial port 1": A second serial port

"serial port 2": A third serial port

"svc button": A service ("SVC") button. Passing the legacy term will yield the same result."gpio12 button"

"usb": One or more USB interfaces

"vga": A VGA output

"video_encoder": A video encoder/transcoder

Example
di = CreateObject("roDeviceInfo")
print di.GetModel()
print di.GetVersion(), di.GetVersionNumber()
print di.GetBootVersion(), di.GetBootVersionNumber()
print di.GetDeviceUptime(), di.GetDeviceBootCount()

On a particular system, this will generate the following:

HD1010
3.2.41 197161
3.2.28 197148
 14353 3129

roResourceManager

ON THIS PAGE

ifResourceManager
SetLanguage(language_identifier As String) As Boolean
GetResource(resource_identifier As String) As String
GetFailureReason() As String

Important

 If you pass a parameter other than one of those listed below, it may return False even if the feature is available on the hardware and
firmware.

GetLanguage() As String
Usage

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

The object is used to manage strings in multiple languages.roResourceManager

Object creation: The object is created with a single filename parameter that specifies the name of the file that contains all of roResourceManager
the localized resource strings required by the user. This file must be in UTF-8 format.

CreateObject("roResourceManager", filename As String)

ifResourceManager

SetLanguage(language_identifier As String) As Boolean

Instructs the object to use the specified language. False is returned if there are no resources associated with the specified roResourceManager
language.

GetResource(resource_identifier As String) As String

Returns the resource string in the current language for a given resource identifier.

GetFailureReason() As String

Yields additional useful information if a function return indicates an error.

GetLanguage() As String

Usage

At present, is primarily used for localizing the . The resource file passed in during creation has the following roResourceManager roClockWidget
format for each string entry:

[RESOURCE_IDENTIFIER_NAME_GOES_HERE]
eng "Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec"
ger "Jan|Feb|Mär|Apr|Mai|Jun|Jul|Aug|Sep|Okt|Nov|Dez"
spa "Ene|Feb|Mar|Abr|May|Jun|Jul|Ago|Sep|Oct|Nov|Dic"
fre "Jan|Fév|Mar|Avr|Mai|Jun|Jul|Aou|Sep|Oct|Nov|Déc"
ita "Gen|Feb|Mar|Apr|Mag|Giu|Lug|Ago|Set|Ott|Nov|Dic"
dut "Jan|Feb|Mar|Apr|Mei|Jun|Jul|Aug|Sep|Okt|Nov|Dec"
swe "Jan|Feb|Mar|Apr|Maj|Jun|Jul|Aug|Sep|Okt|Nov|Dec"

The name in square brackets is the resource identifier. Each line after it is a language identifier followed by the resource string. Multiple roResourc
objects can be created. A default "resources.txt" file, which contains a range of internationalization values for the clock widget, is eManager

available from the . BrightSign website

roSystemLog

ON THIS PAGE

ifSystemLog
ReadLog() As roArray

ifStreamSend

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
http://support.brightsign.biz/entries/23385758-Legacy-Product-Resources

SetSendEol(eol_sequence As String) As Void
SendByte(byte As Integer) As Void
SendLine(string As String) As Void
SendBlock(a As Dynamic) As Void
Flush()

Writing to a Remote Syslog Server

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object enables recording of the system log on a BrightSign player. Note that BrightScript values are not written to the system log; use print
the methods to write to the log instead.ifStreamSend

Object Creation: This object is created with no parameters:

CreateObject("roSystemLog")

ifSystemLog

ReadLog() As roArray

Returns an array of strings. The strings correspond to lines in the system log, spanning from bootup to the most recent entry.

ifStreamSend

SetSendEol(eol_sequence As String) As Void

Sets the EOL sequence when writing to the stream. The default value is CR+LF. If you need to set this value to a non-printing character, use the
 .chr() global function

SendByte(byte As Integer) As Void

Writes the specified byte to the stream.

SendLine(string As String) As Void

Writes the specified characters to the stream followed by the current EOL sequence.

SendBlock(a As Dynamic) As Void

Writes the specified characters to the stream. This method can support either a string or an . If the block is a string, any null bytes will roByteArray
terminate the block.

Flush()

Writing to a Remote Syslog Server

BrightSign players can write to a remote syslog server using the standard syslog protocol. To configure remote logging, write the "syslog" entry to
the "networking" section of the :player registry

Example
registry = CreateObject("roRegistrySection", "networking")
registry.Write("syslog", "my-syslog-server")
registry.Flush()

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

You can specify the syslog using either its IP address or hostname.

Date and Time Objects

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This section describes objects that manipulate date and time settings on the player.

roDateTime
roNetworkTimeEvent
roSystemTime
roTimer
roTimerEvent
roTimeSpan

roDateTime

ON THIS PAGE

ifDateTime
GetDayOfWeek() As Integer
GetDay() As Integer
GetMonth() As Integer
GetYear() As Integer
GetHour() As Integer
GetMinute() As Integer
GetSecond() As Integer
GetMillisecond() As Integer
SetDay(day As Integer) As Void
SetMonth(month As Integer) As Void
SetYear(year As Integer) As Void
SetHour(hour As Integer) As Void
SetMinute(minute As Integer) As Void
SetSecond(second As Integer) As Void
SetMillisecond(millisecond As Integer) As Void
AddSeconds(seconds As Integer) As Void
SubtractSeconds(seconds As Integer) As Void
AddMilliseconds(milliseconds As Integer) As Void
SubtractMilliseconds(milliseconds As Integer) As Void
Normalize() As Boolean
ToIsoString() As String
FromIsoString(date-time As String) As Boolean
ToSecondsSinceEpoch() As Integer
FromSecondsSinceEpoch(seconds As Integer) As Boolean
GetString() As String

ifString
GetString() As String

Firmware Version 7.0

Version 7.0
Version 6.2

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2

Version 6.1
Previous Versions

This object is used to represent an instant in time.

At the time of its creation, a new object represents zero seconds.

ifDateTime

GetDayOfWeek() As Integer

GetDay() As Integer

GetMonth() As Integer

GetYear() As Integer

GetHour() As Integer

GetMinute() As Integer

GetSecond() As Integer

GetMillisecond() As Integer

SetDay(day As Integer) As Void

SetMonth(month As Integer) As Void

SetYear(year As Integer) As Void

SetHour(hour As Integer) As Void

SetMinute(minute As Integer) As Void

SetSecond(second As Integer) As Void

SetMillisecond(millisecond As Integer) As Void

AddSeconds(seconds As Integer) As Void

SubtractSeconds(seconds As Integer) As Void

AddMilliseconds(milliseconds As Integer) As Void

SubtractMilliseconds(milliseconds As Integer) As Void

Normalize() As Boolean

https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Checks that all the fields supplied are correct. This function fails if the values are out of bounds.

ToIsoString() As String

Returns the current value as an ISO-8601 basic formatted string. Hyphens for date and colons for time are omitted, and a comma is roDateTime
used to separate seconds from milliseconds: For example, the ISO-8601 standard "2014-05-29T12:30:00.100" would be formatted as
"20140529T123000,100".

FromIsoString(date-time As String) As Boolean

Sets the value of the object using an ISO-8601 basic formatted string. Hyphens for date and colons for time are omitted, and either a roDateTime
period or comma can be used to separate seconds from milliseconds: The ISO-8601 standard "2014-05-29T12:30:00.100" could, for example, be
formatted as either "20140529T123000,100" or "20140529T123000.100". This method will return False (indicating that it has not affected
changes to the object) if the string is formatted incorrectly or if the date passed is outside the range of January 1, 1970 and roDateTime
December 31, 2100.

ToSecondsSinceEpoch() As Integer

Returns the number of seconds that have elapsed since midnight on January 1, 1970, as represented by the instance (not the roDateTime
system time).

FromSecondsSinceEpoch(seconds As Integer) As Boolean

Populates the instance with the specified number of seconds since midnight on January 1, 1970.roDateTime

GetString() As String

ifString

GetString() As String

Returns the current date using a sortable date format: "YYYY/MM/DD hh:mm:ss.sss".

roNetworkTimeEvent

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifNetworkTimeEvent
WasSuccessful() As Boolean
GetFailureReason() As String

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This event object is generated by the object. roSystemTime

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned by .GetUserData()

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifNetworkTimeEvent

WasSuccessful() As Boolean

Returns True if the last attempt to set the clock via the network (i.e. NTP or HTTP) was successful.

GetFailureReason() As String

Returns a description of the error if the last attempt to set the clock via the network failed.

roSystemTime

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifMessagePort
SetPort(port As roMessagePort)

ifSystemTime
GetLocalDateTime() As roDateTime
GetUtcDateTime() As roDateTime
GetZoneDateTime(timezone_name As String) As Object
SetLocalDateTime(local_DateTime As roDateTime) As Boolean
SetUtcDateTime(utc_DateTime As roDateTime) As Boolean
GetTimeZone() As String
SetTimeZone(zone_name As String) As Boolean
IsValid() As Boolean
GetLastNetworkTimeResult() As roAssociativeArray

Supported Time Zones

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object provides the ability to read and write the time stored in the real-time clock (RTC). It can also be used to read and write the time-zone
setting.

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifMessagePort

SetPort(port As roMessagePort)

Posts messages of the type to the attached message port.roNetworkTimeEvent

Note

Dates up to January 1, 2038 are supported.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifSystemTime

GetLocalDateTime() As roDateTime

Returns the current time from the RTC (modulated using the current time zone) as an instance.roDateTime

GetUtcDateTime() As roDateTime

Returns the current time from the RTC (modulated using the UTC/GMT time zone) as an instance.roDateTime

GetZoneDateTime(timezone_name As String) As Object

Returns the current time from the RTC (modulated using the specified time zone) as an instance. Supported time zones are listed roDateTime
below.

SetLocalDateTime(local_DateTime As roDateTime) As Boolean

Specifies a new time for the RTC using the current time zone.

SetUtcDateTime(utc_DateTime As roDateTime) As Boolean

Specifies a new time for the RTC using the UTC/GMT time zone.

GetTimeZone() As String

Returns the current time-zone setting of the player. A value is appended to the beginning of the string if the time zone has been set POSIX:
using the POSIX format.

SetTimeZone(zone_name As String) As Boolean

Specifies a new time-zone setting for the player (supported time zones are listed below). Alternatively, a POSIX formatted time zone can be
applied by appending a value to the beginning of the string.POSIX:

The following code specifies a POSIX-formatted time zone:

t = CreateObject("roSystemTime")
t.SetTimeZone("POSIX:GMT-0BST-1,M3.5.0/1:00,M10.5.0/2:00")

IsValid() As Boolean

Returns True if the system time is set to a valid value. The time can be set from the RTC or with NTP.

GetLastNetworkTimeResult() As roAssociativeArray

Returns an associative array containing information about the last attempt to set the time via the network:

success_timestamp: A value indicating when the clock was last set successfully via the network. This value is zero if the clock has
never been set successfully via the network.
attempt_timestamp: A value indicating when the last attempt was made to set the clock via the network. This value is zero if no
attempt has been made yet.
failure_reason: If the last attempt to set the clock via the network failed, this string will contain an error message. If the last attempt
was successful, this string will be empty.

In this associative array, "timestamp" refers to the number of seconds since the player booted. This value can be compared against the total
uptime of the player, which is retrieved by calling .UpTime(0)

Supported Time Zones

The following are supported system time zones (this list does not apply to POSIX-formatted time zones):

EST: US Eastern Time
CST: US Central Time
MST: US Mountain Time
PST: US Pacific Time
AKST: Alaska Time
HST: Hawaii-Aleutian Time with no Daylight Savings (Hawaii)

HST1: Hawaii-Aleutian Time with Daylight Saving
MST1: US MT without Daylight Saving Time (Arizona)
EST1: US ET without Daylight Saving Time (East Indiana)
AST: Atlantic Time
CST2: Mexico (Mexico City)
MST2: Mexico (Chihuahua)
PST2: Mexico (Tijuana)
BRT: Brazil Time (Sao Paulo)
NST: Newfoundland Time
AZOT: Azores Time
GMTBST: London/Dublin Time
WET: Western European Time
CET: Central European Time
EET: Eastern European Time
MSK: Moscow Time
SAMT: Delta Time Zone (Samara)
YEKT: Echo Time Zone (Yekaterinburg)
IST: Indian Standard Time
NPT: Nepal Time
OMST: Foxtrot Time Zone (Omsk)
JST: Japanese Standard Time
CXT: Christmas Island Time (Australia)
AWST: Australian Western Time
AWST1: Australian Western Time without Daylight Saving Time
ACST: Australian Central Standard Time (CST) with Daylight Saving Time
ACST1: Darwin, Australia/Darwin, and Australian Central Standard Time (CST) without Daylight Saving Time
AEST: Australian Eastern Time with Daylight Saving Time
AEST1: Australian Eastern Time without Daylight Saving Time (Brisbane)
NFT: Norfolk (Island) Time (Australia)
NZST: New Zealand Time (Auckland)
CHAST: , Fiji Time, , Fiji, Pacific/Fiji, Yankee Time Zone (Fiji)
SST: X-ray Time Zone (Pago Pago)
GMT: Greenwich Mean Time
GMT-1: 1 hour behind Greenwich Mean Time
GMT-2: 2 hours behind Greenwich Mean Time
GMT-3: 3 hours behind Greenwich Mean Time
GMT-3:30: 3.5 hours behind Greenwich Mean Time
GMT-4: 4 hours behind Greenwich Mean Time
GMT-4:30: 4.5 hours behind Greenwich Mean Time
GMT-5: 5 hours behind Greenwich Mean Time
GMT-6: 6 hours behind Greenwich Mean Time
GMT-7: 7 hours behind Greenwich Mean Time
GMT-8: 8 hours behind Greenwich Mean Time
GMT-9: 9 hours behind Greenwich Mean Time
GMT-9:30: 9.5 hours behind Greenwich Mean Time
GMT-10: 10 hours behind Greenwich Mean Time
GMT-11: 11 hours behind Greenwich Mean Time
GMT-12: 12 hours behind Greenwich Mean Time
GMT-13: 13 hours behind Greenwich Mean Time
GMT-14: 14 hours behind Greenwich Mean Time
GMT+1: 1 hour ahead of Greenwich Mean Time
GMT+2: 2 hours ahead of Greenwich Mean Time
GMT+3: 3 hours ahead of Greenwich Mean Time
GMT+3:30: 3.5 hours ahead of Greenwich Mean Time
GMT+4: 4 hours ahead of Greenwich Mean Time
GMT+4:30: 4.5 hours ahead of Greenwich Mean Time
GMT+5: 5 hours ahead of Greenwich Mean Time
GMT+5:30: 5.5 hours ahead of Greenwich Mean Time
GMT+6: 6 hours ahead of Greenwich Mean Time
GMT+6:30: 6.5 hours ahead of Greenwich Mean Time
GMT+7: 7 hours ahead of Greenwich Mean Time
GMT+7:30: 7.5 hours ahead of Greenwich Mean Time

GMT+8: 8 hours ahead of Greenwich Mean Time
GMT+8:30: 8.5 hours ahead of Greenwich Mean Time
GMT+9: 9 hours ahead of Greenwich Mean Time
GMT+9:30: 9.5 hours ahead of Greenwich Mean Time
GMT+10: 10 hours ahead of Greenwich Mean Time
GMT+10:30: 10.5 hours ahead of Greenwich Mean Time
GMT+11: 11 hours ahead of Greenwich Mean Time
GMT+11:30: 11.5 hours ahead of Greenwich Mean Time
GMT+12: 12 hours ahead of Greenwich Mean Time
GMT+12:30: 12.5 hours ahead of Greenwich Mean Time
GMT+13: 13 hours ahead of Greenwich Mean Time
GMT+14: 14 hours ahead of Greenwich Mean Time

roTimer

ON THIS PAGE

ifTimer
SetTime(hour As Integer, minute As Integer, second As Integer, millisecond As Integer) As Void
SetTime(a As Integer, b As Integer, c As Integer)
SetDate(year As Integer, month As Integer, day As Integer) As Void
SetDayOfWeek(day_of_week As Integer) As Void
SetDateTime(date_time As roDateTime) As Void
Start() As Boolean
Stop() As Void
SetElapsed(seconds As Integer, milliseconds As Integer)

ifMessagePort
SetPort(port As roMessagePort) As Void

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifIdentity
GetIdentity() As Integer

Examples

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object allows the script to trigger events at a specific date/time or during specified intervals. Events are triggered by delivering roTimerEvent
objects to the specified message port.

ifTimer

SetTime(hour As Integer, minute As Integer, second As Integer, millisecond As Integer) As Void

Sets the time for the event to trigger. In general, if a value is -1, then it is a wildcard and will cause the event to trigger every time the rest of the
specification matches. If there are no wildcards, then the timer will trigger only once when the specified time occurs.

SetTime(a As Integer, b As Integer, c As Integer)

SetDate(year As Integer, month As Integer, day As Integer) As Void

Sets the date for the event to trigger. In general, if a value is -1, then it is a wildcard and will cause the event to trigger every time the rest of the
specification matches. If there are no wildcards, then the timer will trigger only once when the specified date/time occurs.

SetDayOfWeek(day_of_week As Integer) As Void

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Sets the day of week for the event to trigger. In general, if a value is -1, then it is a wildcard and will cause the event to trigger every time the rest
of the specification matches. If there are no wildcards, then the timer will trigger only once when the specified date/time occurs.

SetDateTime(date_time As roDateTime) As Void

Sets the time when you wish the event to trigger from an object. It is not possible to set wildcards using this method.roDateTime

Start() As Boolean

Starts the timer based on the current values specified using the above functions.

Stop() As Void

Stops the timer.

SetElapsed(seconds As Integer, milliseconds As Integer)

Configures a timer to trigger once the specified time period has elapsed. Unlike the absolute timer methods above, changes to the system clock
will not affect the period of the SetElapsed() timer.

ifMessagePort

SetPort(port As roMessagePort) As Void

Posts messages of type to the attached message port.roTimerEvent

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

ifIdentity

GetIdentity() As Integer

Returns a unique number that can be used to identify when events originate from this object.

Examples

This script uses the method to create a timer that triggers every 30 seconds:SetElapsed()

Sub Main()
 mp = CreateObject("roMessagePort")
 timer = CreateObject("roTimer")
 timer.SetPort(mp)

 timer.SetElapsed(30, 0)

 print "Start at "; Uptime(0)
 timer.Start()

It is possible, using a combination of SetDate() and SetDayOfWeek() calls, to specify invalid combinations that will never occur. If
specifications include any wildcard, then the second and millisecond specifications must be zero; events will be raised at most once per
minute near the whole minute.

Note

The interface has been deprecated. We recommend using the interface instead.ifIdentity ifUserData

 while true
 ev = mp.WaitMessage(0)
 if type(ev) = "roTimerEvent" then
 print "Timer event received at "; Uptime(0)
 timer.Start()
 else
 print "Another event arrived: "; type(ev)
 end if
 end while
End Sub

This script creates a timer that triggers every minute using wildcards in the timer spec:

st=CreateObject("roSystemTime")
timer=CreateObject("roTimer")
mp=CreateObject("roMessagePort")
timer.SetPort(mp)

timer.SetDate(-1, -1, -1)
timer.SetTime(-1, -1, 0, 0)
timer.Start()

while true
 ev = Wait(0, mp)
 if (type(ev) = "roTimerEvent") then
 print "timer event received"
 else
 print "unexpected event received"
 endif
endwhile

This script creates a timer that triggers once at a specific date/time.

timer=CreateObject("roTimer")
mp=CreateObject("roMessagePort")
timer.SetPort(mp)

timer.SetDate(2008, 11, 1)
timer.SetTime(0, 0, 0, 0)

timer.Start()

while true
 ev = Wait(0, mp)
 if (type(ev) = "roTimerEvent") then
 print "timer event received"
 else
 print "unexpected event received"
 endif
endwhile

roTimerEvent

ON THIS PAGE

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

ifSourceIdentity
GetSourceIdentity() As Integer

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This event object is generated by the object.roTimer

ifUserData

SetUserData(user_data As Object)

Sets the user data.

GetUserData() As Object

Returns the user data that has previously been set via (either on the source or event object). It will return Invalid if no data has SetUserData()
been set.

ifSourceIdentity

GetSourceIdentity() As Integer

Retrieves the identity value that can be used to associate events with the source instance. roTimer

roTimeSpan

ON THIS PAGE

ifTimeSpan
Mark()
TotalMilliseconds() As Integer
TotalSeconds() As Integer
GetSecondsToISO8601Date(a As String) As Integer

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object provides an interface to a simple timer for tracking the duration of activities. It is useful for tracking how long an action has taken or
whether a specified time has elapsed from a starting event.

ifTimeSpan

Note

The interface has been deprecated. We recommend using the interface instead.ifSourceIdentity ifUserData

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

Mark()

TotalMilliseconds() As Integer

TotalSeconds() As Integer

GetSecondsToISO8601Date(a As String) As Integer

Legacy Objects

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This section describes objects that are still offered by BrightScript, even though their primary functionality has been replaced by more modern
objects.

roRtspStreamEvent
roSyncPool
roSyncPoolEvent
roSyncPoolFiles
roSyncPoolProgressEvent

roRtspStreamEvent

ON THIS PAGE

ifInt
GetInt() As Integer
SetInt(value As Integer) As Void

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

This object is no longer used to return events related to RTSP streams. The object now returns events related to an associated roVideoPlayer roR
.tspStream

ifInt

GetInt() As Integer

Returns the event ID.

SetInt(value As Integer) As Void

Sets the value of the event.

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned by .GetUserData()

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

roSyncPool

ON THIS PAGE

 ifSyncPool
ValidateFiles(sync_spec As roSyncSpec, directory As String, options_array As roAssociativeArray) As Object
GetFailureReason() As String
AsyncDownload(a As Object) As Boolean
AsyncCancel() As Boolean
Realize(a As Object, b As String) As Object
ProtectFiles(a As Object, b As Integer) As Boolean
ReserveMegabytes(a As Integer) As Boolean
GetPoolSizeInMegabytes() As Integer
EstimateRealizedSizeInMegabytes(a As Object, b As String) As Integer
IsReady(a As Object) As Boolean
Validate(a As Object, b As Object) As Boolean
EnablePeerVerification(a As Boolean)
EnableHostVerification(a As Boolean)
SetCertificatesFile(a As String)
SetUserAndPassword(a As String, b As String) As Boolean
AddHeader(a As String, b As String)
SetHeaders(a As Object) As Boolean
SetMinimumTransferRate(a As Integer, b As Integer) As Boolean
AsyncSuggestCache(a As Object) As Boolean
SetProxy(a As String) As Boolean
SetProxyBypass(a As Array) As Boolean
SetFileProgressIntervalSeconds(a As Integer) As Boolean
QueryFiles(a As Object) As Object
SetFileRetryCount(a As Integer) As Boolean
SetRelativeLinkPrefix(prefix As String) As Boolean
BindToInterface(interface As Integer) As Boolean
EnableUnsafeAuthentication(a As Boolean)
EnableUnsafeProxyAuthentication(enable As Boolean) As Boolean
EnableEncodings(enable As Boolean) As Boolean
SetMaximumReceiveBytesPerSecond(bytes_per_second as Double) As Boolean
SetMaximumPoolSizeMegabytes(maximum_size As Integer) As Boolean

ifIdentity
GetIdentity() As Integer

ifMessagePort
SetPort(a As Object)

ifUserData
SetUserData(user_data As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

We recommend using instead.roAssetPool

Object Creation: The object is created with a single parameter that specifies the file path where the pool is located.roSyncPool

CreateObject("roSyncPool", pool_path As String)

Example
pool = CreateObject ("roSyncPool", "SD:/pool")

 ifSyncPool

ValidateFiles(sync_spec As roSyncSpec, directory As String, options_array As roAssociativeArray) As Object

Validates the files in the specified directory against the hashes in the specified sync spec. Files that are not in the sync spec are ignored. The
options array can currently contain the following optional parameters:

DelteCorrupt (Boolean): Automatically delete files that do not match the sync spec. The method will return an associative
array that maps each fileneame to an explanation of why it is corrupt. The array only contains corrupt files, so the success is
reported by the method returning an empty associative array.

GetFailureReason() As String

AsyncDownload(a As Object) As Boolean

AsyncCancel() As Boolean

Realize(a As Object, b As String) As Object

ProtectFiles(a As Object, b As Integer) As Boolean

ReserveMegabytes(a As Integer) As Boolean

GetPoolSizeInMegabytes() As Integer

EstimateRealizedSizeInMegabytes(a As Object, b As String) As Integer

IsReady(a As Object) As Boolean

Validate(a As Object, b As Object) As Boolean

EnablePeerVerification(a As Boolean)

EnableHostVerification(a As Boolean)

SetCertificatesFile(a As String)

SetUserAndPassword(a As String, b As String) As Boolean

AddHeader(a As String, b As String)

SetHeaders(a As Object) As Boolean

SetMinimumTransferRate(a As Integer, b As Integer) As Boolean

AsyncSuggestCache(a As Object) As Boolean

SetProxy(a As String) As Boolean

SetProxyBypass(a As Array) As Boolean

SetFileProgressIntervalSeconds(a As Integer) As Boolean

QueryFiles(a As Object) As Object

SetFileRetryCount(a As Integer) As Boolean

SetRelativeLinkPrefix(prefix As String) As Boolean

BindToInterface(interface As Integer) As Boolean

EnableUnsafeAuthentication(a As Boolean)

EnableUnsafeProxyAuthentication(enable As Boolean) As Boolean

EnableEncodings(enable As Boolean) As Boolean

SetMaximumReceiveBytesPerSecond(bytes_per_second as Double) As Boolean

SetMaximumPoolSizeMegabytes(maximum_size As Integer) As Boolean

ifIdentity

GetIdentity() As Integer

ifMessagePort

SetPort(a As Object)

ifUserData

SetUserData(user_data As Object)

Sets the user data that will be returned when events are raised.

Note

The interface has been deprecated. We recommend using the interface instead.ifSourceIdentity ifUserData

GetUserData() As Object

Returns the user data that has previously been set via . It will return Invalid if no data has been set.SetUserData()

roSyncPoolEvent

ON THIS PAGE

ifSourceIdentity
GetSourceIdentity() As Integer

ifSyncPoolEvent
GetEvent() As Integer
GetName() As String
GetResponseCode() As Integer
GetFailureReason() As String
GetFileIndex() As Integer

ifUserData
SetUserData(a As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

We recommend using instead.roAssetFetcherEvent

ifSourceIdentity

GetSourceIdentity() As Integer

ifSyncPoolEvent

GetEvent() As Integer

GetName() As String

GetResponseCode() As Integer

GetFailureReason() As String

GetFileIndex() As Integer

ifUserData

SetUserData(a As Object)

GetUserData() As Object

roSyncPoolFiles

ON THIS PAGE

ifSyncPoolFiles

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

GetFailureReason() As String
GetPoolFilePath(a As String) As String
GetPoolFileInfo(a As String) As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

We recommend using instead.roAssetPoolFiles

ifSyncPoolFiles

GetFailureReason() As String

GetPoolFilePath(a As String) As String

GetPoolFileInfo(a As String) As Object

roSyncPoolProgressEvent

ON THIS PAGE

ifSourceIdentity
GetSourceIdentity() As Integer

ifSyncPoolProgressEvent
GetFileName() As String
GetFileIndex() As Integer
GetFileCount() As Integer
GetCurrentFileTransferredMegabytes() As Integer
GetCurrentFileSizeMegabytes() As Integer
GetCurrentFilePercentage() As Float

ifUserData
SetUserData(a As Object)
GetUserData() As Object

Firmware Version 7.0

Version 7.0
Version 6.2
Version 6.1
Previous Versions

We recommend using instead.roAssetFetcherProgressEvent

ifSourceIdentity

GetSourceIdentity() As Integer

ifSyncPoolProgressEvent

GetFileName() As String

https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting
https://docs.brightsign.biz/download/attachments/3441795/BrightScript%20Reference%20Manual%20%28ver%206.2%29.pdf?version=1&modificationDate=1520623904658&api=v2
https://docs.brightsign.biz/display/BSV61/6.1-BrightScript
http://support.brightsign.biz/entries/314526-brightsign-user-guides-troubleshooting

GetFileIndex() As Integer

GetFileCount() As Integer

GetCurrentFileTransferredMegabytes() As Integer

GetCurrentFileSizeMegabytes() As Integer

GetCurrentFilePercentage() As Float

ifUserData

SetUserData(a As Object)

GetUserData() As Object

	BrightScript
	Language Reference
	Variables, Literals, and Types
	Operators
	Objects and Interfaces
	XML Support
	Garbage Collection
	Events
	Threading Model
	Scope
	Intrinsic Objects
	Program Statements
	Built-In Functions
	Core Library Extension
	BrightScript Debug Console
	BrightScript Versions
	Reserved Words
	Example Script

	Object Reference
	Global Functions
	BrightScript Core Objects
	roArray
	roAssociativeArray
	roBoolean
	roByteArray
	roDouble, roIntrinsicDouble
	roFunction
	roInt, roFloat, roString
	roJRE
	roList
	roMessagePort
	roRegex
	roXMLElement
	roXMLList

	Presentation and Widget Objects
	roAudioConfiguration
	roAudioOutput
	roAudioPlayer
	roAudioPlayerMx
	roAudioEventMx
	roCanvasWidget
	roClockWidget
	roHdmiInputChanged, roHdmiOutputChanged
	roHtmlWidget
	roHtmlWidgetEvent
	roImageBuffer
	roImagePlayer
	roImageWidget
	roRectangle
	roStreamQueue
	roTextField
	roTextWidget
	roTextWidgetEvent
	roTouchScreen
	roTouchEvent, roTouchCalibrationEvent
	roVideoEvent, roAudioEvent
	roVideoInput
	roVideoMode
	roVideoPlayer

	File Objects
	roAppendFile
	roCreateFile
	roReadFile
	roReadWriteFile

	Hashing and Storage Objects
	roBlockCipher
	roBrightPackage
	roDiskErrorEvent
	roDiskMonitor
	roHashGenerator
	roPassKey
	roRegistry
	roRegistrySection
	roSqliteDatabase
	roSqliteEvent
	roSqliteStatement
	roStorageAttached, roStorageDetached
	roStorageHotplug
	roStorageInfo
	roVirtualMemory

	Content Management Objects
	roAssetCollection
	roAssetFetcher
	roAssetFetcherEvent
	roAssetFetcherProgressEvent
	roAssetPool
	roAssetPoolFiles
	roAssetRealizer
	roAssetRealizerEvent
	roSyncSpec

	Networking Objects
	roDatagramReceiver
	roDatagramSender
	roDatagramSocket
	roDatagramEvent
	roHttpServer
	roHttpEvent
	roKeyStore
	roMediaServer
	roMediaStreamer
	roMediaStreamerEvent
	roMimeStream
	roMimeStreamEvent
	roNetworkAdvertisement
	roNetworkConfiguration
	roNetworkAttached
	roNetworkDetached
	roNetworkDiscovery
	roNetworkHotplug
	roNetworkStatistics
	roPtp
	roPtpEvent
	roRssArticle
	roRssParser
	roRtspStream
	roSnmpAgent
	roSnmpEvent
	roStreamByteEvent
	roStreamConnectResultEvent
	roStreamEndEvent
	roStreamLineEvent
	roSyncManager
	roSyncManagerEvent
	roTCPServer
	roTCPConnectEvent
	roUPnPActionResult
	roUPnPController
	roUPnPDevice
	roUPnPSearchEvent
	roUPnPService
	roUPnPServiceEvent
	roTCPStream
	roUrlTransfer
	roUrlEvent

	Input/Output Objects
	roBtManager
	roBtClientManager
	roBtClientManagerEvent
	roBtClient
	roBtClientEvent
	roCecInterface
	roCecRxFrameEvent
	roCecTxCompleteEvent
	roChannelManager
	roControlPort
	roControlUp, roControlDown
	roGpioButton
	roGpioControlPort
	roIRReceiver
	roIRDownEvent, roIRRepeatEvent, roIRUpEvent
	roIRTransmitter
	roIRTransmitCompleteEvent
	roIRRemote
	roIRRemotePress
	roKeyboard
	roKeyboardPress
	roSequenceMatcher
	roSequenceMatchEvent
	roSerialPort

	System Objects
	roDeviceCustomization
	roDeviceInfo
	roResourceManager
	roSystemLog

	Date and Time Objects
	roDateTime
	roNetworkTimeEvent
	roSystemTime
	roTimer
	roTimerEvent
	roTimeSpan

	Legacy Objects
	roRtspStreamEvent
	roSyncPool
	roSyncPoolEvent
	roSyncPoolFiles
	roSyncPoolProgressEvent

